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A model of space-time is worked out starting from the two primitive concepts 
of preparticle and of membership relation of set theory. We obtain as derivative 
concepts those of space-time and inertial reference frame, also those of energy, 
frequency, momentum, and wavelength of a physical system in a given refer- 
ence frame. Proportionality relations between energy and frequency, and be- 
tween momentum and (wavelength)-l are shown to be satisfied in our model. 
The same constant of proportionality intervenes in these two relations, and we 
interpret it as the Planck constant expressed in a particular system of units. 
Energy and momentum are conserved in the usual sense, provided we consider 
sufficiently large regions of the space-time diagram associated to the reference 
frame under consideration. Lorentz transformations and Heisenberg's inequali- 
ties are discussed within the framework of our model. 

1. I N T R O D U C T I O N  

Few concepts  in physics have proved to be more  fruitful, descriptive, 
and  unifying than space- t ime.  This explains why there is a growing 
interest in founda t ion  theories of this concept.  There  exist several such 
theories, among  which are the following: Basil 's deductive theory of space 
and  time (Basri, 1966), Finkelstein's space- t ime  code theory (Finkelstein, 
1969, 1972a, 1972b, 1974; Finkelstein, Frye, and Susskind, 1974), and  
Penrose 's  theory of space - t ime  (Penrose, 1967, 1968, 1975). Also, founda-  
tional theories of the concepts  of space (Penrose, 1971; Bunge and  
Garcia-M~ynez,  1976) and time (Noll, 1967; Bunge 1967, pp. 93-100;  
Garcia-Sucre,  1975) have been proposed.  Let us give a very brief account  
of these theories. However,  the interested reader is urged to s tudy the 
above-ment ioned  papers together with the more  general works of Russell 
(1969a, 1969b), Re ichenbach  (1957), Gonse th  (1964), Bunge (1967), and  
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the collection of papers in the book The Nature of Time, edited by Gold 
(1967). 

Basri's theory is a relational and macroscopic theory of space-time. 
Starting from eight primitive concepts, this theory develops a space-time 
geometry. The primitive concepts of this theory are those of observer, 
sensation, subjective entity, objectivity, appearance event, disappearance 
event, coincidence of events, and signal relation. Particles, events, clocks, 
and length-measuring instruments are derivative concepts playing an es- 
sential role in the whole theory. General Relativity and Basil's theory 
appear to be compatible (Basri, 1966). 

In Finkelstein's theory (Finkelstein, 1969, 1972a, 1972b, 1974; Finkel- 
stein et al., 1974) the most basic entities are elementary processes. The way 
in which elementary processes form a process is represented by a network. 
The world is considered to be represented by a discrete complex Of binary 
entities, which in turn represent elementary quantum processes. In this 
sense, the Finkelstein theory is an atomistic microscopic theory whose 
atoms (considered as entities that cannot be further separated in parts) are 
processes themselves. These basic entities of the theory are required to be 
both quantum and relativistic objects (Finkelstein, 1974). Minkowski's 
space-time and a proper time Dirac equation are obtained in a particular 
limit of this theory (Finkelstein et aI., 1974). 

The Penrose theory is also a microscopic theory of space-time 
(Penrose, 1967, 1968, 1975), in which the most basic entities are repre- 
sented by pairs of spinor fields. Pertrose has called these basic entities 
twistors and has proposed as one of the possible intuitive representations 
massless particles in free motion (Penrose, 1975). A twistor space is 
introduced such that every space-time point corresponds to a subset of 
twistors belonging to this space. In this theory, both space-time and the 
complex Hilbert space of quantum mechanics are derivative from the 
twistor space. This capacity to describe space-time and Hilbert space (two 
completely different kinds of spaces) from a unifying point of view is one 
of the main points of this theory. Another important result of Penrose's 
theory is that once the properties of the twistor are given, then the 
dimension and signature of space-time are correctly fixed (Pen.rose, 1975). 

Theories of the relatively simpler concept of space have also been 
proposed. Pertrose's spin network model of the physical world is an 
example of such theories (Penrose, 1971). According to this theory, the 
physical world can be seen as a network in which every junction (line) 
between knots (points) represents a physical entity with a well-defined 
angular momentum equal to nh/2, where n is an integer. 

The theory of space proposed by Bunge and Garcia-M~iynez (1976) is 
a foundation theory. They construct a relational theory of space from the 
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primitive concepts of concrete thing and of action of one thing upon 
another. The physical space is defined as the set of concrete things 
provided with a topology. This topology is defined by making use of a 
separation function, which in turn is defined in terms of the primitive 
concepts of the theory. By adding some natural assumptions, the space is 
constrained to have three dimensions. 

The Noll theory of universal time (Noll, 1967) starts from the primi- 
tive concepts of an event and a function that pairs couples of events to real 
numbers. With the aid of this function, one obtains a partition of the set of 
events and orders the corresponding quotient set. Each equivalence class 
belonging to this set represents an instant. Bunge extends the theory by 
introducing new concepts which allow the definition of local time (Bunge, 
1967, pp. 93-100, 1968). 

In our model we start by assuming an atomistic type of hypothesis. 
We take for granted the existence of preparticles, which are considered to 
be the basic ingredients of any physical system. Preparticles are unchange- 
able physical objects without internal structure (Garcia-Sucre, 1975, 
1978a). Furthermore, preparticles do not interact with each other. The 
concept of interaction between systems of particles is in our model a 
derivative concept not defined for preparticles (Garcia-Sucre, 1978a). 

Particles are formed by preparticles in a sense to be precisely stated 
below. The advantages of this distinction between preparticles and par- 
ticles in connection with the problem of the atomistic hypothesis in physics 
have been discussed in a previous paper (Garcia-Sucre, 1978a). 

Let B=--(%]i~I}, where I is a finite set of labels, be the set whose 
numbers o~ are all the preparticles. In previous papers the set B was 
assumed as a denumerably infinite set (Garcia-Sucre, 1975, 1978a, b). 
However, in the present paper we take B to be a finite set, though with 
very many members. We have been inclined in favor of this last choice 
because in this way our model accounts for a general feature that real 
physical systems have (see Section 3). On the other hand, all the properties 
of our model except those related to the number of all possible evolving 
and nonevolving particles, which have been explained in previous papers 
(Garcia-Sucre, 1975, 1978a) remain unchanged when the constraint of 
finiteness of B is introduced. 

Note that set B has no structure. The only property that characterizes 
this set is that its members are just all prepartictes. However, the power set 
P(B) has a structure and is simply related to B. Since we have assumed the 
existence of B, then the existence of P(B) follows from postulate of usual 
set theory. In this concern, let us say that throughout the present paper we 
make use of set theory in the version of Fraenkel and Bar-Hillel (Fraenkel, 
1961a; Fraenkel and Bar-Hillel, 1958). 
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We represent a particle as a subset of P ( B ) - O ,  where q~ denotes the 
empty set, and a physical system as a set of such sets (Garcia-Sucre, 1975). 

Then the set 

p,-- {a~(x)]x~X and a i ( x ) ~ e ( B ) }  (1.1) 

where X is a finite set of labels, represents a particle. If the set p/ can be 
completely ordered according to the proper inclusion relation C between 
its members, we say that Pi represents an evolving particle (Garcia-Sucre, 
1975). In other words, an evolving particle is a chain (the concept of a 
chain is clearly discussed in Fraenkel and Bar-Hillel, 1958, pp. 128-131). 
On the other hand, the subsets of P(B) that are not chains represent 
nonevolvingparticles (Garcia-Sucre, 1975, 1978a). 

We call a state ofp i any set si(x) of preparticles fulfilling the relation 

s i (x )=ai (x )  - Uai(x'), x' E X '  (x) (1.2) 

where ai(x), ai(x ') ~Pi, and all the ai(x ') with x' ~ X ' ( x )  are members of Pi 
such that ai(x)Z__ai(x ') (Garcia-Sucre, 1975). The a states of a particle can 
be ordered according to the following rule: Given the a states s~(x) and 
si(y) of Pi we say that si(x) precedes si(y)[si(x)-~si(y)] if ai (x )ca i (y ) ,  
where a i(x), a i(y) ~Pi. 

We denote as Z(p)  the set of a states of a particle p. According to the 
above ordering rule for a states it follows that if p is an evolving particle, 
then Z(p)  is a completely ordered set. However, if p is a nonevolving one 
then both p and Z(p)  are partly ordered sets. 

An intuitive representation of an evolving particle could be a set of 
closed surfaces, each one containing a finite number of preparticles. Each 
such closed surface represents an a state of the particle under considera- 
tion. The preparticles inside a closed surface are the preparticles belonging 
to the a state represented by such a closed surface. The closed surfaces 
themselves stand only to point out the preparticles belonging to the o~ state 
represented by them. Roughly speaking we can say then that the closed 
surfaces are only used to represent the fact that preparticles inside them 
form sets, just those sets of preparticles which are the a states of the 
particle under consideration. Furthermore, all the closed surfaces repre- 
senting the a states of a given particle are linked in sequence by a flexible 
arrow, which specifies the ordering of these a states. Recall that the order 
in which the a states of an evolving particle p appear is completely 
determined, once the particle p is given, by the way in which the members 
a(x) o f p  are properly included in each other. Therefore, the arrows linking 
closed surfaces serve only to give a graphic representation of the order in 
which a states appear for a particle. 
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Following the same conventions, a set of particles will appear as a 
collection of arrows passing over closed surfaces. If closed surfaces related 
to different particles overlap (because there exist preparticles belonging to 
both closed surfaces) then these particles are connected. Since we have said 
that an arbitrary set of particles represents a physical system, the structure 
of a physical system is characterized by both the ordering of the a states of 
its particles and the way in which these particles are connected to each 
other. Note that according to equation (1.2), which defines a states of a 
particle Pi, it can be seen that for an evolving particle pj the elements aJ(y) 
of pj will be represented within the above conventions as unions of dosed  
surfaces (see Theorem 1 demonstrated in Section 2). On the other hand, 
each nonevolving particle will appear in the above representation as either 
a collection of arrows linking closed surfaces or a collection of closed 
surfaces not linked by arrows, or as a mixture of the two cases. This 
follows from the fact that nonevolving particles and the corresponding sets 
of a states are represented by sets that are only partly ordered. In other 
words, within the above conventions an evolving particle appears as a 
graph with only one branch and a nonevolving particle appears as either a 
ramified graph, or several one-branch graphs, or closed surfaces without 
connecting arrows, or mixtures of these three cases. 

According to our definition of a set representing a system of particles, 
two main cases may arise. Given a set B'  C_ B of preparticles, a set S whose 
elements are subsets of P(B')--and thus representing a system of particles 
- - m a y  be such that any p c_ P(B') is an element of S. In this case, we say 
that S is comp]ete with respect to the set of preparticles B'. The comple- 
mentary case also occurs in our model and, in fact, given a set of 
preparticles B' C B, only one of the sets S that can be constructed using as 
elements subsets of P(B') is complete. All other such sets representing 
physical systems are not complete. Note that if a set S is complete with 
respect to a set B', then this set is a lattice since ~ ~ S and both the union 
or the intersection of any two elements of S again yield elements of S 
(Birkhoff, 1961). 

We will see in the next section that according to the model outlined 
above the concepts of field produced by a physical system (Garcla-Sucre, 
1978a), of space-time, and of inertial reference frame, can be obtained as 
derivative concepts starting from the primitive concepts of preparticle and 
of membership relation ~ of the set theory. Here we also prove a property 
of evolving particles and discuss the concepts of field, space-time, and 
reference frame. In Section 3 we analyze the concepts of energy and 
frequency, momentum and wavelength of a physical system in a given 
frame. Also, we briefly analyze the problem of the pointlike aspect that 
particles sometimes present, in contrast with the extended character that 
they manifest at some other times. 
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Finally, let us underline that our model of space-time is relational in 
the sense that the disappearance of preparticles would likewise entail the 
disappearance of particles, physical systems, fields, and space-time. In 
other words, space-time does not have an existence independent from that 
of the most elementary components of matter. 

2. FIELD AND SPACE-TIME 

Let us start this section by proving a property of evolving particles. 

Theorem 1. For any evolving particle Pi with an ordered set of a 
states Z(p i )=( s i ( x ) , s i ( y ) , . . . , s i ( v ) )  one has p i = ( s i ( x ) , s t ( x ) U  
s i(y) . . . . .  s i (x)  U s t (y)  U "'" U si(v)). Conversely, given a partition 
7r= {t~liEI,  tiC_B' and tiA ( / = ~  for any i, j E I }  of a set B'C_B, 
where I is a finite set of integers, then a set c =-- (t k, t k U t t . . . . .  tk U tt 
U " "  U ts[k,l, . . . .  s E I )  is an evolving particle with a set of states 
given by (t k, tz . . . .  , ts). 

Proof There exists a one-to-one mapping between the sets Z(pi) and 
Pt, such that the members of both sets are in the correspondence st(x)~--~, 
at(x) established by equation (1.2) 

- u (2.1) 

where s i ( x ) ~ Z ( p t ) , a i ( x ) E p t ,  at(x)t.Z_ai(x'). To see this let us first recall 
Theorem 1 of a previous paper (Garcia-Sucre, 1978a) according to which 
given two different elements a t(x) and ai(y)  of an evolving particle Pi, then 
the a states si(x)  and s i (y)  related, respectively, to ai(x)  and at(y)  by 
equation (2.1) are disjoint sets, i.e., s i ( x ) A s i ( y ) = ~ .  Therefore, a i ( x ) ~  
ai(y)  implies si(x)v~si(y) .  

Conversely, s i ( x ) ~ s i ( y )  implies that ai(x)=/:ai(y). This is equivalent 
to proving that from ai(x)  = at (y)  it follows that st(x) = si(y).  To see this 
last implication let T(a i(x)) =-- { a i(x')[ x'  E X ' ( x )  ) and T( a i(y)) = ( a i(y,)[ y,  
~ X ' ( y ) )  be the sets to which belong all the members of Pi fulfilling, 
respectively, that at(x')  ~ ai(x)  and a i(y,) 7~ a t(y) [see the definition of a 
state, equation (2.1)]. Then, from a i ( x ) = a t ( y )  it follows that T(a t (x ) )= 
T(at(y))  since the members of both sets fulfill the same property P 
determining each set (Fraenkel, 196 lb). Therefore, 

U at(x') = U at(y9 
x'~X'(x) j e x ' ( y )  

which together with a ;(x)= a t(y) and equation (2.1) leads to s t (x )=  s i(y). 
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Thus we have that there exists a one-to-one mapping between 2 ( p i )  
and Pr Furthermore, the particular mapping between 2 ( p i )  and Pi with 
which we have been concerned above establishes a similarity relation 
between 2(p i )  and Pi [let us recall that a similarity relation between sets is 
a binary relation between sets such that there exists a one-to-one mapping 
between them that preserves the order in which the members appear in 
each of these sets (Fraenkel, 1961, pp. 134-138)]. 

Since 2 ( p i )  has a first member, say s i (x ) ,  and there exists a similarity 
relation between Z(pi) and pi, then p~ must also have a first member which 
according to equation (2.1) is a i(x).  Furthermore, s i ( x ) =  a i (x)  since Pi is a 
chain, a ~(x) is its first member, and therefore any other member a i(z)  of Pi 
is such that a i ( x ) c a i ( z ) .  Then Ux.Ex , ( x )a i ( x ' )= f~  in equation (2.1) and 
thus s i ( x )  = a i (x ) .  

We have in this way proven the first part of the theorem for the first 
member o f p r  Let us proceed by induction and assume that the property is 
satisfied by the nth member ofp~, i.e., 

a i ( r )  = s i (x )  U s i ( y )  U �9 n.. U s i ( r )  (2.2) 

The relation between the (n + 1)th a state s i ( t )  and  (n + 1)th member ai ( t )  
ofpi  is given by equation (2.1): 

si( t ) ----ai( t )  - U ai ( t ' )  (2.3) 
r ~ x ' ( o  

From the fact thatpi is a chain and that ai(r)  immediately precedes ai ( t )  in 
Pi, one obtains. U rEx,( t)ai( t  ') = ai(r) .  Then equation (2.3) can be written as 
s i ( t )  = a i ( t ) -  a'(r),  and since a i(r) C ai( t )  we get ai( t )  = a i ( r ) U  si( t ) .  This 
relation and equation (2.2) entail 

a i ( t )  = s i ( x )  U s i ( y )  U " "  U s i ( t )  (2.4) 

which completes the proof of the first part of the theorem. 
Reciprocally, the set c = { t g ,  tk U t  t . . . . .  tk U t t U  . .  . Uts} ,  where 

t~, t l . . . . .  ts are members of a partition ~r of a set B'C_ B, represents a particle 
since the members of c are subsets of B, and thus c is a subset of the power 
set P ( B ) .  Also, the set c represents an evolving particle since its members 
can be completely ordered by the proper inclusion relation C. Finally, 
from equation (2.1), and on account of the ordering rule s i ( x ) < s i ( y )  if 
and only if a i ( x ) c  a~(y),  one obtains, following similar steps as above, that 
Z (  c) = ( t,,  tt, . . . , t~), which completes the proof. 

Corollary 1. Any evolving particle p; is univocally determined by 
its set of a states E(pi). 



732 Garcia-Sucre 

Proof First, two different evolving particles Pi and pj cannot have the 
same set of a states, since in that case E(pi)= Y(p/) and according to the 
first part  of Theorem 1 we should have Pi =Pj. Conversely, an evolving 
particle p; cannot have more than one set of a states. To see this, assume 
that an evolving particle can have more than one set of a states. Let us 
choose two of these sets, which can be written as 

:~(p,)=(s'(~,),~'(~) ..... s'(~.)) 
and 

(2 .5)  

~"(Pi) = (S i (y  1), S i(y2) . . . . .  S iCYm) ) (2.6) 

Then, f rom Theorem 1 and equations (2.5) and (2.6) we can write, 
respectively, 

p,=( ; ' (~, ) ,s ' (x , )u s'(~9 ..... ; ' ( x , )u  s'(x9 u . - -  u ~'(~.)) (2.7) 

and 

Pi = ( s i ( y l ) , S i ( y l )  U s i (y2)  . . . . .  s i ( y l )  U s i (y2)  U " "  U s i (ym))  

Since these two ordered sets are equal we must  have that n = m and 

(2.8) 

s'(x,) = s" (y , )  

s'(x,) u ~'(x9 = . ' ( y , )  u s ' (y9 

si(x l)  U si(x2) U ' ' "  U si(xn) = s i (y l )  U si(y2) U " "  U si(y.)  

Recall now that the a states of an evolving particle are disjoint sets 
(see Theorem 1 of a previous work, Garcia-Sucre, 1978a). Then, f rom the 
above equalities it follows that s i ( x l )= s i ( y l ) , s i ( x2 ) -~ - s i ( y  9 . . . . .  si(Xn) = 
s i(y,), and therefore Y(Pi)=Z'(pi). 

In order to describe the structure of a system S, we use the concept of 
point of crossing in a physical system. [In a previous paper (Garcia-Sucre, 
1978a) we have called it complex, yet we prefer the present denomination 
because it suggests an appropriate intuitive representation.] A point of 
crossing in a physical system is represented by an ordered pair 
(si(x); ~ri(S)), where si(x) is an a state of a particle belonging to S, and 
Try(S) is the subset of S such that i f p  ~ ~r/(S), then there exists at least one 
s E Z(p)  fulfilling s f~ si(x)--A~. We call s i(x) the center, and r the ~r 
set of the point of crossing (si(x);~ri(S)), which we also denote as 
o(si(x); S). 
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Two points of crossing o(si(x); S )  and o(sJ(y); S) are connected with 
each other if there exists at least one particle p E S such that either there 
exists a s ~ E(p) for which we have s n si(x) 4 = ~ and s N sJ(y) v ~  i, or there 
exists at least two s',s" E E(p) such that s' n s i ( x ) ~ f ~  and s" N sJ(y)4:O. 

The structure-set EE(S) of a system S is the set whose members are  

all the points of crossing in S (Garcia-Sucre, 1978a). 
Two particles p and p' are similar or have the same structure if there 

exists a one-to-one mapping ~b between E(p) and E(p') such that + both 
preserves the order in each of these sets and puts into correspondence a 
states with the same number of preparticles. We call ~b a similarity 
mapping. 

Let - i . i (it o - ( s  (x),Trx(S)) and =(sJ(y);TrJ(s)) be two points of crossing 
in S presenting identical structures. More precisely, we say that o and o' 
are similar or have the same structure--which we denote as a ~ o ' - - i f  there 
exists a one-to-one mapping ~ between ~rx(s)i and ~ry2(S) fuffilling the 

. . . .  ( P  . . . . .  

conditions (1) Ifpi ~--)pj, thenpi andpj are similar particles; (n) there exists a 
,p 

similarity mapping Z ( p i ) ~  (pj) which puts into correspondence a s E Y,(pi) 
with a s' ~ Y,(pj) and s n si(x)v~f~ and s' N s J ( y ) v ~ .  

In a previous paper we have required a further condition for 
(s i (x);~ri(s))~(sJ(y);TrJ(s)) ,  which refers to other crossings of particles 
than those occurring over the centers of these two points of crossing 
(Garcia-Sucre, 1978a). Here we have omitted this kind of condition. 
Instead we have preferred that for each point of crossing in S only its 
center becomes relevant in connection with crossings of particles. There- 
fore, the structure of a point of crossing is determined by the particles 
crossing over its center. 

In a previous paper we have given arguments in favor of representing 
by Y.Y,(S)/~ the field produced by a system S (Garcia-Sucre, 1978a). 
Recall that - -  stands for the relation of similarity between points of 
crossing. 

In both sets Y Z ( S ) / ~  and ZZ(S) the structural features of S are 
apparent. The elements of ZE(S) are points of crossing and the set EE(S) 
can be visualized as a network whose knots are the centers of the points of 
crossing in S. The junctions between these knots stand for the particles of 
S connecting points of crossing in S. On the other hand, the elements of 
Z Z ( S ) / ~  are equivalence classes of points of crossing. Here again we can 
visualize E E ( S ) / - -  as a network, each knot of which represents the union 
of the centers of the points of crossing belonging to the same element of 
Z Z ( S ) / ~ .  The junctions in such a network stand for the particles of S 
connecting points of crossing belonging to different equivalence classes. In 
fact, we consider each equivalence class belonging to f = E Z ( S ) / ~  as a 
point of the field represented by f;  the connections between two points 
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x,x'Ef being given by the particles of S connecting points of crossing 
belonging, respectively, to x and x' (Garcia-Sucre, 1978a). 

Furthermore, each one of the sets Y,Y.(S)/~ and ~51.(S) have the 
following positive features in order to represent the field produced by a 
system S (Garcia-Sucre, 1978a): (i) they are both such that their elements, 
points of crossing in the case of Y.Z(S) and equivalence classes of points of 
crossing in the case of ZY~(S)/~, are constructed out of particles belong- 
ing to S. This establishes a direct relation between physical systems and 
the fields they produce; (ii) a topology can be ascribed to each of the sets 
ZZ(S) / -~  and ZY(S) once S is given. The topology of either ~E(S)/,~ or 
EZ(S) will be determined by the way in which the elements of Y ~ ( S ) / ~  
or EE(S) are, respectively, connected; and, (iii) the concept of interaction 
between two physical system S and S' can be obtained as a clear-cut 
derivative concept using either one of the two possibilities of representing 
fields. 

If we represent by f=ZZ(S)/~ and f'=EZ(S')/~ the fields pro- 
duced by S and S', the definition of interaction between S and S' is as 
follows (Garcia-Sucre, 1978a): the systems S and S' interact if and only if 
fuf'-~EY~(S U S')/~. Equivalently, we say in this case that f and f '  are 
coupled to each other. In the complementary case, i.e., if fuf=ZE(S U 
S')/~, we say that S and S' do not interact or equivalently that f and f '  
are uncoupled. 

In the case that we choose EE(S) instead of Y,Y.(S)/~ to represent 
the field produced by S, the interaction between two physical systems can 
be defined along the same lines as in the case of ZY,(S)/~.  

Notwithstanding the features that E Z ( S ) / ~  and ZE(S) have in 
common we have been inclined in favor of E Y ( S ) / ~  in order to represent 
the field produced by S (Garcia-Sucre, 1978a). We explain below the main 
reasons for this choice. 

First, recall that to an element x of EY,(S)/~ is associated the 
structure that is shared by all the points of crossing belonging to the 
equivalence class x. Since EY.(S)/~ is necessarily a partition of EE(S) 
there cannot occur overlapping between different elements of Y.Z,(S)/~. 
Each element of Y,Z(S)/~ can be labeled by its own structure without 
incurring ambiguity, since the structure of a given point of ZY.(S)/~ is 
necessarily different from the structure of any other point of YZ(S)/,.~. 
This is closely related to the point of view that one adopts in general 
relativity, according to which the labeling of the space-time points pro- 
ceeds by taking into account what happens in their surroundings (Misner, 
Thorne, and Wheeler, 1970). The structure of a point x of E E ( S ) / ~  is 
determined by the structure of the particles of S crossing over centers of 
points of crossing belonging to x (in short, we will say: the particles of S 
crossing over x). In the representation of Y~Z(S)/~ as a network that we 
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have mentioned above it is clear that the particles of S crossing over x can 
be interpreted as being part of the surrounding of the network knot 
corresponding to x. However, we have left out the neighboring points of x 
in order to characterize x, which would be more approximate to the 
method of labeling the space-time points in general relativity. This is 
because in our model it is sufficient to consider only the structure of the 
particles crossing over a point of a field to characterize this point without 
ambiguity with respect to all other points of the same field. 

On the other hand, if we represent the field produced by S with the set 
Y.E(S) instead of E E ( S ) / ~ ,  the only way we have for labeling two points 
of crossing having the same structure without introducing extra elements 
to ZZ(S) - - such  as marks, letters, numbers, etc.--is to use the preparticles 
entering in each such points of crossing. This can be done in principle 
since preparticles have been assumed to be elements of the same set B, and 
therefore preparticles must be distinct from each other by set definition. 
However, this way of labeling would be in conflict with our definition of 
interaction between systems of particles. We have said that the concept of 
interaction in our model is not defined for preparticles. There is no 
meaning in saying that two preparticles interact, or that a preparticle 
interacts with a system of particles, etc. In our model only systems of 
particles can interact with each other, and we also say that two particles 
can interact in the sense that two systems each having a unique particle as 
element can interact with each other. One is then inclined to conclude that 
preparticles cannot be detected since it seems difficult that the detection of 
a physical entity can occur without interacting with this entity (we define 
below what we understand precisely by detection of a particle when we 
define detectors of particles as a particular case of physical systems). If we 
admit that there is no way to detect preparticles in the framework of our 
model this should be a good reason not to characterize either point of 
crossing belonging to ZE(S) or points of Z Z ( S ) / ~  by the preparticles 
entering in them. 

Note that if we represent a field produced by S with the set EE(S)/~ 
we are implicitly assuming that when the field under consideration has 
more than one point it is precisely because there exist points of crossing in 
S that differ in structure. Therefore, without introducing any extra ele- 
ments to a field one has that each of its points is completely characterized 
with respect to the remaining points of the same field. We then introduce 
the following postulate: 

Postulate 1. Any region of the physical world is formed by field points 
and two such regions are distinct from each other only because the field 
points entering in one of them have different structures from those of the 
field points entering in the other region. 
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Let p be a particle that does not belong to S. We can then ask: how 
does system S ' =  (p}  affect the field f=Z,E(S)/~ due to the interaction 
between S and S'? Following our definition of interaction between fields, 
consider the field f '  = EE(S  U S ' ) /~  which may differ from f =  EZ(S)/~ 
in several ways: 

(i) When going from S to S U {p)  the structure of those points of 
crossing in S over which p passes may change. 

(ii) A point of crossing belonging to an equivalence class of ZZ(S) /~  
having a given structure, when modified by p may become an element of 
an equivalence class of EY.(S U S ' ) /~  having a different structure. 

(iii) The number of points o f f =  ZZ(S)/~ may be different from the 
number of points of f'---YY.(S U S') /~.  It may occur that the number of 
points of f '  is either smaller or larger than those of f. The first case arises 
when going from S to S U {p)  the particle p destroys the dissimilarity 
between some points of crossing in S in such way that some equivalence 
classes of E Y . ( S ) / ~  become empty sets without the appearance of new 
equivalence classes when one considers the set ZY,(S U S ' ) /~.  The second 
case, in which f '  has more points than f,  occurs when going from S to 
S U {p} the particles p destroy the similarity between points of crossing in 
S giving rise to points of crossing having structures different from those of 
any point of crossing of S. 

On the other hand, if we represent fields by sets EY(S), even if (i) 
applies again, both (ii) and the case in which f '  has a smaller number of 
points than f mentioned in (iii) do not apply to this case. It  can be easily 
seen that Z Y ( S u  {p))  can only have either the same number or more 
points of crossing than EZ(S)  since there are only two possibilities: either 
any a slate o f p  is a center of a point of crossing in S or there exist a states 
of p that are not such centers. These two cases correspond to Y.Z(S U (p }) 
having, respectively, an equal or larger number  of points of crossing than 
YY~(S). 

The above discussion also applies to the case in which f=ZZ(S) /~  
interacts with a system of many particles instead of only one particle as 
discussed above. We can then say that in choosing ZY.(S)/~ instead of 
Y.Y,(S) to represent the field produced by S we are selecting an alternative 
that proves richer in relation to the ways in which a field can be modified 
by the interaction with another system of particles. And we will see in 
Section 3 that the point (ii) above is important in relation to the process of 
detection of particles in a given reference frame. Also, it is relevant to the 
fact that in our model physical systems, in a detection process, sometimes 
behave as if they were pointlike objects and at other times they appear as 
spatial extended entities. Examining this question in detail would lead us 
to the problem of whether quantum mechanics, or at least some essential 
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traits of this theory, finds a natural place in our model. This we will try to 
answer in a forthcoming paper  (Garcla-Sucre, 1979a). Here we limit 
ourselves to a discussion of the concept of detector of physical systems and 
to a description of the way in which physical systems appear  in a detection 
process. When the detected physical system has a unique particle as 
element we also speak of detection of a particle. We also discuss in Section 
3 a trait of particles in our model that allows us to ascribe both a 
frequency and a wavelength to every particle and more generally to every 
physical system in a reference frame. 

The intensity of a fieM at one of its points, say x, is given by the 
number  of preparticles belonging to the union of the centers of all the 
points of crossing belonging to this point x. We denote the intensity of a 
f i e ld f  at this point as I (x; f ) .  

A fieM f is said to be homogeneous if the intensity of f has the same 
value at every point of f, i.e., if I ( x ; f ) = I ( y ; f )  for every pair of points 
x,y ~ f .  When the complementary case stands we say that f is nonhomoge- 
n eo/./3. 

When a particle p has at least an a state which yields a nonempty  
intersection with the center of a point of crossing belonging to a point x of 
a field f,  we have said that p crosses over the point x of f.  Let 
x I . . . . .  x i . . . . .  x~ be the points of f such that p crosses over them. The 
trajectory of p in f can be defined as the set of these points ordered 
according to the order in which the a states of p appear  in the set Y,(p) 
(Garcla-Sucre, 1978a). I t  is clear that the trajectory of p in f will be a 
completely ordered set if (a) each a state of the particl~ p gives rise to 
either only one or none of the points of the trajectory o f p  in f ;  and (b) all 
such a states are ordered in E(p).  Thus, we can also have trajectories that 
are only partly ordered sets. We denote as Tp: the set representing the 
trajectory of a particle p in the field f .  

Given a collection of fields f l  . . . . .  Jr/, respectively, produced by the 
system S 1 . . . . .  S i, we call a space-time associated to a collection of fields 
f l , - . .  , f / to  the field produced by  the physical system S = S 1 t_J . .  �9 U Si. We 
denote such a space- t ime as ST(S) .  

According to the above defintion, the space- t ime S T ( S )  is the global 
field with respect to the collection f l  . . . . .  fi associated to ST(S) ,  since the 
fields f l , - - .  ,f~ are, respectively, produced by the physical systems S 1 . . . .  , Si, 
and one has that S = S~ td �9 �9 �9 U Si. Also note that S T ( S )  depends upon the 
physical system S and therefore upon the collection of physical systems 
producing the fields f l  . . . .  ,fi. To be sure, we can also speak of the 
space- t ime produced by the physical system resulting f rom the union of all 
physical systems. This particular case of our definition will be  closer to the 
usual way of conceiving space- t ime as the unique physical entity in which 



738 Garela-Sucre 

the entire universe spreads itself. Our definition opens the possibility of 
considering also space-t imes as "large" as necessary according to the 
fields relevant to the problem at hand. 

Since according to our definition a space-t ime is a global field with 
respect to a given collection of fields, all that we have discussed above in 
connection with fields applies equally to space-time. In particular, let us 
underline that the elements of a space-t ime are constructed from particles 
only, that every point of a space-t ime is completely characterized with 
respect to any other point of the same space-t ime by difference between 
the structure of these points, and that a space-t ime has a topology 
characterized by the way in which its points are connected to each other. 
On the other hand, we have not assumed that space-t ime is uniform. This 
will depend in our model on the systems S 1 . . . .  , S i producing the fields 
f l  . . . . .  f with respect to which the global field S T ( S ) = Z Z ( S ) / ~ ,  where 
S = Sl U " "  U Si, is defined. Depending on S, the space-t ime S T ( S )  may 
be found anywhere between the two following exteme cases: either S T ( S )  
presents all kind of irregularities such as cuts and strong nonhomogeneities 
or S T ( S )  is uniform in the sense that it does not present any cuts or strong 
nonhomogeneities. Therefore, in our view as far as we have particles we 
also have space-t ime no matter the extent to which it may be fragmentary. 
In this sense, according to our definition of field and space-t ime it can be 

easily seen that if to S belong very many particles giving rise to a large 
number of points of crossing with different structures, then the space- t ime 
S T ( S )  may be expected to approach uniformity and to have a large 
extension. If, on the other hand, the system S under consideration is 
"small" it may occur that E E ( S ) / ~  has few points poorly connected to 
each other. 

Since a space-t ime is a global field we will also speak of homogeneity 
and nonhomogeneity of a space-time. Also, we will distinguish between 
homogeneity and connectedness of a space-time. We say that a space- 
time is connected if it does not present any cut. Note that homogeneity is 
related only to the intensity of a field in each of its points. 

One of the main reasons to define space-t ime as we have done above 
is that according to our definition of reference frame given below, a 
reference frame can be seen as a physical entity that is submerged in a 
given space-time. In this sense, we adopt the usual point of view that 
a reference frame plays the role of a "window" through which we see a 
part of a space-time. Furthermore, our definition of reference frame will 
lead us to easily characterize what we understand by an inertial frame, and 
to relate it to the usual way in which inertial frames are defined. 

Note that since a space-t ime is also a field we can also speak of 
trajectory of a particle in a space-time. Consider a collection of physical 
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systems S 1, $ 2 , . . .  , a m which are included in the system S associated to the 
space-time S T ( S ) =  Y.E(S) /~ .  Let ~- be the set of all evolving particles 
belonging to S l U $2"'" Sn whose trajectories in ST(S)  do not cross each 
other, i.e., such that Pi,P+ E ~" implies that Tf N T, y = q~. On the other hand, 
let e be the set of all evolving particles belo"ngin"g to S 1 U $ 2 - "  U S, such 
that any p 'Ee  has a trajectory in ST(S)  which either intersects the 
trajectory in ST(S)  of a particle p e r  in only one point or does 
not intersect it at all, i.e., for p E ' r  and p ' E e  one has that T~A Tf is 
either empty or only one point of f belongs to it. If each a state of the 
particles belonging to �9 yields nonempty intersections with points of 
crossing belonging to only one point of ST(S),  then the trajectories of the 
particles belonging to ,r in f will be completely ordered sets. Note, on the 
other hand, that particles belonging to e induce orderings of collections of 
particle trajectories belonging to ~'. In order to see this, recall that the 
trajectory of a p ' ~  e intersects the trajectory of a p ~ r at just one point or 
not at all. For instance, let TpY,=(xl . . . . .  x i . . . . .  x,,) be the completely 
ordered set representing the trajectory of p' in f.  Assume that the particles 
Pa .... ,Ps .... ,pt~'r are such that ~ n T~ = (x l} , . . . ,T  ~ O T ~ = ( x i }  . . . . .  

n T y =  (Xm}. Then the collection of trajectories ~ . . . .  *, ~ . . . . .  T~ of par-' 
titles belonging to r can be ordered according ~o the *following rule: 
T f < T p  f, if T~NT~= {x i ) ,T fNTJ,= {Xm) and x i ~ x  m in the ordered 

set T[,. This yields the completely ordered set of trajectories 
~T f e T f  T[~ 

p o ,  " . . , p , ,  . . . , p , , , .  

We say that trajectories of particles belonging to ~ connect trajectories 
of particles belonging to ~-. When two such trajectories are distributed in 
the ordered set under consideration in such a way that one of them is 
either the immediate successor or the immediate antecedent of the other, 
then we say that these two trajectories in f are immediately connected to 
each other by a particle of e. A given trajectory of Tp y with p ~ I- can be 
immediately connected to either none or one or several trajectories of 
particles belonging to ~'. We define the number of all such trajectories as 
the order of immediate connection of the trajectory T~ y with respect to ~" 
and e, which we denote as l,,~(T~). 

A reference frame RI in a space-time f =  ST(S)  with respect to a 
collection of physical systems S1,S 2 .... ,S,  is specified by the set Ry = _ 
(Ry~ where Rf=_Up~,T/pC_ST(S) and ~r, e c S ,  u S 2 u . . ,  u S ,  are 
such that the following conditions hold: 

(i) 
(ii) 

The trajectories Tp / where p ~ ~ are completely ordered sets. 
There exists a one-to-one mapping X between any two trajecto- 
ries ~ and Tp/, where Pl,Pj ~ ~', which preserves the order in 
each of them . -  
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(iii) A point of f appears at the most in one trajectory Tp / with p E ~-. 
(iv) The trajectories Tel, with p '  ~ e  are completely ordered sets and 

are such that given any trajectory Tp / with p E z, then ~ either 
does not cross Tp / or crosses it at just one point. 

(v) Once a collection of trajectories Tp / with p E ~(p') c i- have been 
ordered by  a particle p ' E  e according to the rule given above, 
this ordering remains unaltered when any other particle of e is 
considered. Furthermore,  U p, ~ ~ ~(p') = ~'. 

(vi) For any Tp y wi thp  E~- one has that p~(Te/) is equal to either 2n 
or 2 n -  2, where n is an integer. 

The above conditions that the set ~- and e must fulfill are very 
restrictive. This fact is related to the feature of our model that the same 
preparticle may enter in more than one point of the field f (to be specific, 
we say that a preparticle a i enters in a point x ~ f  when oti belongs to the 
union of the centers of the points of crossing belonging to x). The same 
preparticle a; may belong to several points of f since, first, the only 
condition that a point of crossing tr must fulfill in order to belong to a 
point x E f  is to have the same structure as any other t r '~ x and, second, 
the centers of points of crossing having either the same or different 
structures may have nonempty intersections. Therefore, the condition (i) 
above is a very restrictive one since a trajectory Tp y is a completely ordered 
set if both p is an evolving particle and each a state of p has nonempty 
intersections with centers of the points of crossing belonging to only one 
point of f.  Yet this last condition cannot be fulfilled by an a state to which 
a preparticle entering in more than one point of f belongs. In the more 
general situation where the above case occurs, reference frames can be 
seen as follows. To an a state s i of an evolving particle p corresponds the 
cluster of those points of f in which enter preparticles belonging to the a 
state si. The clusters are ordered according to the order of the a states of p. 
Then we obtain a reference frame in which clusters of points play the same 
role as the points in the above definition. If in each of these clusters enters 
a very large number of field points we say that the reference frame in 
question corresponds to a macroscopic scale. On the other hand, if we also 
want to have a reference frame structure inside each cluster we can use a 
pair of sets ~ and g for each cluster and discard any connection between 
field points appearing in different clusters. For the sake of simplicity, the 
above remark will be hereafter taken for granted and we will always refer 
to our definition of reference frame where conditions (i)-(vi) appear. 

We call a point of R:--~(R:0;~';e) any point belonging to R: ~ The 
distinction between Rf and py0 is necessary because a reference frame R: is 
specified both by its points (i.e., by the elements belonging to Rf ~ and by 
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the way in which these points are connected to each other (i.e., by ~- and e). 
Note that a point of Rf belongs not to R l but to Rf. 

In relation to the condition (vi) above we say that a reference frame R: 
in a space-time f =  ST(S)= Z 2 : ( S ) / ~  is an n-dimensional reference frame 
with an (n-1)-dimensional  boundary if for some trajectories T f ,  where 
Pi E % C ~r, one has that p:(T~)= 2n, and for some other trajectories 'T/with 
p E ~ - %  one has that u:(T:)=2n-2 If, on the other hand, R~ i~such 

J . ~ " . 7 

that for every trajectory Tp J with p E r one always has v:(T~)=2n, then Rf 
is said to be n-dimensional without boundaries. The definition of reference 
frame we have given above is different from that given in a previous paper. 
Yet, these two definitions share a certain number of properties that are 
characteristic of reference frames (Garcia-Sucre, 1978a). We prefer the 
present definition because it is simpler and, in our view, corresponds better 
to the way in which reference frames are established in practice, although 
with both definitions we can associate unambigously space and time 
coordinates to points of particle trajectories. 

The present definition of reference frame accounts for the following 
features: (a) the points of a reference frame R: are points belonging to the 
space-time f - - S T ( S )  in which R: is defined; (b) the way in which the 
points of Rf distribute themselves in R: depends upon the choice of 
physical systems SI,...,S ~ included in S such that the sets ~- and e 
corresponding to Rf are constructed with evolving particles belonging to 
S~u... uS.. 

We illustrate in Figure 1 a reference frame Ry in a f= ST(S)= 
I~Z(S)/~ such that the corresponding set e has a unique element p '  and 
~'=(Pl,-. . ,Pg}. The slanted arrow in the figure together with all those 
double circles crossed over by this arrow represent the trajectory TpY,, where 
p ' E  e. Each vertical arrow together with those double circles over which it 
passes represent the trajectory ~ of a particlepi E'r(i = 1,9). Double circles 
stand for the points of f =  Y~N(S)/~ that are points of Ry. Therefore, these 
double circles represent equivalence classes of points of crossing belonging 
to Y,N(S). Each of these points of RI can be differentiated from any other 
point of RI because each of these points has a different structure. The way 
in which the points of each trajectory ~ with p,. E ~- appear in the figure 
depends upon the ordering of the a states of Pi. The ordering of the points 
of each trajectory is specified by the arrows in the figure. The way in which 
the trajectories ~ are horizontally ordered in the figure is fixed by the 
ordering of the a states of p'. 

Vertical trajectories in this figure can be interpreted as docks of the 
reference frame Ry. The one-to-one mappings X between pairs of trajecto- 
ries of particles belonging to "r which preserve the order in each of these 
trajectories can be used to assign time coordinates to the points of Rf. For 
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Fig. 1. We illustrate here a reference frame Rf= (Ry~ z; e). Double circles stand for the points 
of the field f=  Y.E(S)/~ that also belong to Ry ~ Each vertical arrow together with those 
double circles over which it passes represent the trajectory ~ of an evolving particle 
pi E "r(i= 1,9). The slanted arrow together with all those double circles crossed over by this 
arrow represent the trajectory ~ of an evolving particle p' ~e. The case illustrated here 
corresponds to a set e with only one particle, and to an order of immediate connection 
~,~(T/),piE'r, equal to either 1 or2. Then Ry is a one-dimensional reference frame with a 
zero-dimensional boundary. 

each pair of trajectories ~ and T~ with Pi,Pj E.r there exists only one 
possible one-to-one mapping X0 that preserves the order of the points of 
these trajectories. With all such mappings X#- we put into correspondence 
all the first elements of the trajectories T~, where Pi E ~-. In the same way, 
we put into correspondence the second elements of the same trajectories, 
the third elements, etc . . . . .  Then, we assign the same time coordinate to 
those points of Re that correspond to each other according to the above 
mappings Xu. Finally, choosing a point of Re as the origin we assign time 
and spatial coordinates to each point of Re by respectively counting the 
number  of horizontal rows of points and vertical trajectories separating 
each point of Re f rom the origin (see Figure 1). 

For  the sake of simplicity, the reference frame represented in Figure 1 
has been chosen to be such that the corresponding set e has a unique 
element: the particle p ' .  According to our definition of reference frame, we 
can also have examples of reference frames for which the sets e are such 
that more than one particle belongs to  them. Furthermore,  our example is 
simple enough to be such that the order of immediate connection p~(TpY) of 
trajectories TA withpiE'r is equal to either 2 or 1. Then, Re in Figure 1 is a 
one-dimensional reference f rame with a zero-dimensional boundary.  The 
space- t ime  diagram associated with this reference frame has only one 
bounded space axis and one bounded  time axis. Furthermore,  both these 
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axes are discrete. In general, we can have reference frames with more than 
one space axis. Note that space-t ime diagram and space-t ime are com- 
pletely different concepts. The first one is simply a system of space and 
time coordinate axes which is associated to a given reference frame (Taylor 
and Wheeler, 1966, Chap. 1), while a space-t ime is a physical entity 
embracing reference frames and physical systems. 

Given an arbitrary particle p~ whose trajectory TpY in the space-t ime 
f= ST(S) is such that TY A Rjea~,  then to every point of T~I, that also 
belongs to RI can be associated space and time coordinates in R e. We have 
already defined what we understand by trajectory of a particle in a field 
and thus also in a space-time. Now we define trajectory of a particle in a 
reference which must be clearly distinguished from the first. In fact, we 
have used trajectories of particles in a field to define reference frames in 
that field, and we define presently trajectories of particles in a reference 
frame by using this last concept. 

Given a particle p and a reference frame Ry in f =  ST(S), the trajec- 
tory T(p; Ry) of p in Ry is a set having the same elements as Tpl; but this set 
differs from T S in that the ordering of the points of T(p; Ry) is induced by 
the time axis of Ry instead of the set Y(p) of a states of p, according to the 
rule: for two x,y ~ T(p;R/) one has that x<y  if the time coordinate of x 
in Rj is smaller than that of y (Garcia-Sucre, 1978b). 

Following the above definition, T(p;Ry) may be either a partly or a 
completely ordered set depending on whether some of its points have the 
same time coordinates in Ry or not. Furthermore, the ordering in T(p;Rj) 
does not depend upon the fact that p is either an evolving or a nonevolving 
particle, since the order of the elements of T(p; Rf) is induced by the time 
axis of Rf (Garcia-Sucre, 1978b). In the same way we can define the 
trajectory T(Si; Ry) of the physical system S i in the frame Rj as the set 
having the same elements as UpEsT~ and ordered according to their time 
coordinates in Rf. 

Given a space-t ime ST(S)---NE(S)/~, such that S represents a 
physical system to which a very large number of particles belong, then 
there exist many different reference frames in the same space-time, each 
one corresponding to a different collection of systems S 1 . . . . .  S n included in 
S. It may even occur that more than one frame extending over the whole 
of a space-t ime exists. This occurs when every pair of points of a 
space-t ime ST(S) are connected by many evolving particles of S, and so 
we can choose different pairs of sets z and e, each pair giving rise to a 
frame having as points all those belonging to ST(S). This is related to the 
fact that to specify a frame in a given spacetime ST(S) consists in selecting 
one of the many ways in which points belonging to ST(S) are connected 
to each other by evolving particles belonging to S. Thus, even if a frame 
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Ry=(Ry~ z,e) has all the points of ST(S), i.e., Ry ~  ST(S), this frame may 
correspond to one of the possible selections of sets r and e included in S 
(see the definition of reference frame). 

A reference frame Ry in a spacetimef= ST(S) is said to be inertial if the 
intensity of f has the same value at every point of Ry. 

We will see in the next section that this definition of inertial frame is 
consistent with the constancy of the wavelength and frequency of a 
physical system when it travels from one region to another of the same 
inertial frame. Now, as the last point of this section, let us discuss the 
relation existing between the above definition and the usual way in which 
inertial frames are characterized. 

Assume that the space-time f =  ST(S) under consideration is nonho- 
mogeneous. Therefore, any reference frame Ry covering a sufficiently large 
number of points belonging to ST(S) will be manifestly nonhomogeneous. 
If Rf is such that the intensity of f changes gradually between neighboring 
points on Ry, it is clear that as we consider frames covering only parts of Rj 
the non_homogeneity of these frames will be, according to our definition, 
less manifest than for Ry. And this is what usually occurs when in order to 
get inertial frames in general relativity we are forced to work with small 
reference frames in both spatial distances and intervals of time that can be 
defined within these frames (see for instance Taylor and W'heeler, 1966, 
Chap. 1). 

Let A be a region localized in space (e.g., a narrow stripe along a time 
axis) in the nonhomogeneous frame Rf where the intensity of f is consider- 
ably larger than that in any other region located sufficiently far from A in 
Ry. According to our definition of trajectory T(p; RI) it follows that points 
of trajectories of particles p will tend to appear more frequently in the 
region A than in any other region of Rf (this can be understood by 
recalling that a particle p will pass over those points of a field f with which 
it shares at least a preparticle, and that the larger the intensity of f in a 
point more preparticles will enter in this point). Since Rf is nonhomoge- 
neous it is not an inertial frame according to our definition. Neither is Ry 
an inertial frame in the usual sense because trajectories T(p;R/) are 
deformed towards a region A of Rf localized in space. In this sense, there 
exists a parallelism between the usual definition of inertial frame and ours. 
Furthermore, we can follow steps corresponding well with those of the 
usual procedure in order to get an inertial frame within a prefixed degree 
of approximation (Taylor and Wheeler, 1966, Chap. 1). In our example 
above we can define a new reference flame Rf having part of the points of 
R t and differing from R f in the sets ~" and e, i.e., Py'=(Rf~162 where 
R f ~  Rf,  ~-' ~ "  and e' =~e. Moreover, each particle belonging to r is chosen 
in such a way that its trajectory approaches as closely as possible the 
average trajectories of particles passing over the same region of Ry. 
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Disregarding oscillations around mean values we obtain in this way a 
reference frame which may be taken as inertial in the usual sense of the 
term (Taylor and Wheeler, 1966, Chap.l). Obviously, in this case, as when 
we are concerned with the usual definition of inertial frame (Taylor and 
Wheeler, 1966, Chap. 1), once we have fixed the accuracy within which a 
frame Rf is inertial, this determines the maximal extension that Rf may 
have beyond which Rf cannot be inertial within the prefixed accuracy in 
question. To see this in terms of the elements of our model, assume t h a t / ~  
is a rather extended frame both in space and time, i.e., that considerably 
more than one particle belongs to ,r' and that each of these particles has 
much more than one a state. For the sake of simplicity, assume that both 
Ry and Rf are frames of the same kind as the frame illustrated in Figure 1. 
The frame Rf has been constructed in such a way that it covers a given 
curved stripe of points of Ry. If the particles belonging to r '  tend to 
approach the region A of Re, then they come closer to each other as they 
approach the region A. Thus, the curved stripe of points of Rf covered by 
Rf should be spatially larger far from A than near to A. But this is not 
compatible with the equidistance between the points of the trajectories of 
the particles belonging to the  set ~" of a frame such as those illustrated in 
Figure 1. This feature has been represented in this figure by choosing 
vertical lines that represent particles belonging to * parallel to each other. 
And this corresponds in the usual operational way of defining inertial 
frames to the fact that concrete inertial frames are considered to be rigid 
bodies in the sense that they do not adapt themselves to the shape of the 
line of forces of the gravitational field under consideration (Taylor and 
Wheeler, 1966, Chap. 1). This problem of reference frames in a nonhomo- 
geneous space-time will be further analyzed in a forthcoming paper 
(Garcia-Sucre, 1979b). 

3. ENERGY, FREQUENCY, MOMENTUM, AND WAVELENGTH 
OF A PHYSICAL SYSTEM IN A REFERENCE FRAME 

We need a statistical description of reference frames in order to 
describe what we understand by a detector of particles, and frequency, and 
wavelength of a particle in a reference frame. 

A reference frame RI is a replica of Rf, if the following conditions are 
fulfilled: 

(i) N[R/~ -- N [R~~ where R / ~  (R/~ 1-; e) and Kf - (~/,~ 
(ii) given a point x of R / a n d  a point y of R/, such that x has in R / the  

same coordinates as y in Rf, then x and y fulfill that I ( x ; f ) =  
I(y;f'). 
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Note that in the above definition that generally f:/=f'; however, it also 
covers the particular case in which f=f ' .  On the other hand, the prepar- 
titles entering in the points of any given reference frame necessarily belong 
to the set B, since by definition B is the set whose elements are all the 
preparticles. Furthermore, in our formalism a preparticle is equally suitable 
to enter in a point of a given frame just like any other preparticle of B, 
since one has not stated any condition about the possibility of preparticles 
entering or not in the points of a reference frame. Therefore, if we consider 
statistical ensembles of reference frames using the above criterion of 
replica, we have the following property: the probability p(xi;Ry ) that a 
given preparticle enters in the point x i E R~ is given by the ratio 

p(xi; Rf)= I(xi; Rf) / N [ B ] (3.1) 

where I(x~; Rf) is the intensity of the field f at the point x i ~ R~. We denote 
as p(Ry) the average of p(xi;Rf) over the points xi~Ry, i.e., 

1 N[Rd 
E P(xi;Rf) P(Rf)-= N[ Rf] i=1 

(3.2) 

In the same way we have the average intensity of f at the points of Ry: 

1 Nine] 
E I(xi;Rf) I(Rf)=-- N[ Rf] i=, (3.3) 

If RI is an inertial frame, it follows from the definition of inertial frame 
and equations (3.1)-(3.3) that p(Rf)=p(xi;Rf) and I(Rf)=I(xi;Rf) for 
every x i E gf. 

According to equation (3.1) there is a certain probability different 
from zero that a preparticle of S~ may enter in a given point of Ry. 
Therefore, if the frame Rf is such that N[Rf]p(Rf)>>l and N[Rf]>>err(S~), 
where ~,~r(S,) denotes the total number of preparticles belonging to the 
elements of the particles that belong to S~, then it may occur that all the 
preparticles of Si enter in the points of R e. Since the same preparticle may 
appear in several points of Rt it may even occur that considering only a 
part of the points of T(S~;Ry) all the preparticles of S,. already enter in 
these points. To see that a same preparticle of S; may enter in several 
points of Rf recall that according to our Postulate 1 the points of a field are 
distinct from each other only because these points have different struc- 
tures. Then, taking into account that particles entering in different points 
of crossing are such that their et states may intersect each other, it follows 
that the same preparticle may appear in different points of the same field. 
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Thus, the probability p(xi; Ry) that a preparticle enters in the point xi of R: 
is independent of the fact that the same preparticle enters or not in another 
point of R:. 

When N[Ry]p(Ry)~ 1 it may occur, in contrast with the case described 
above, that only a part and eventually none of the preparticles of Si enter 
the points of R:. 

We can choose a unit interval of time in terms of which the intervals 
in any trajectory T/,p ~ ~-, can be measured. This can be done by fixing the 
number or points along any trajectory T/ that are covered by a unit 
interval of time. At least it is otherwise explicity indicated we fix each unit 
interval of time to cover only one point of Ry. 

The frequency of a physical system S i in an inetial frame Ry is the 
number of points belonging to T(Si; Rf) that also belong to an arbitrary 
trajectory T/,p ~ ~-, per unit interval of time. Let us denote this frequency 
as ~(Si; Rf). 

In general, the frequency ~2(Si; Rf)_may not have a well-defined value. 
The concepts of mean frequency ~(S~;Ry) and standard deviation 
A~2(Si;Rf) then become necessary. To calculate ~2(Si;Rf) divide 
N[T(Si;Rf) ] by the total number of intervals necessary to cover all the 
trajectories T/,p E z, of the frame Rf. The frequency of a system S i in a 
frame Rf has a well-defined value if Af~(Si;Ry)=O. If we are concerned 
with a physical system S k to which only one particle Pk belongs then we 
speak interchangeably of the frequency f~(S~; Ry) of the system S k or the 
frequency of the particle Pk in the frame R:, which we denote f~(p~; R f). 

Consider a system Si= {p,}, where pi = {{%}} is a particle in which 
only one preparticle enters. From equations (3.1) and (3.2) it follows that 
the frequency f~(p~;Rf) of p~ in Ry fulfills the relation 

a(pi; Ry) --p( Rf) (3.4) 

Note that according to this equation and equation (3.1) it follows that 
0 < ft(p~; R:)< 1, which is a consequence of the fact that we have taken 
each unit interval of time as covering only one point of Rf. 

In the case of a particle pj in which many preparticles enter the 
frequency ft(pj;Rf) fulfills the relation ~2(pj;Ry)=g(~r(pj))p(Ry), where 
v~r(p:.) stands for the number of preparticles participating in pj. An expres- 
sion for the function g(n), where n-----~,~r(pj), can be obtained by  considering 
the equation 

N[  r (pj ;  R:)] - -P(R:)N[ Ry] + P( R:) ( N[ Rf ] -p(Ry)N[ Rj]} 

+ p(Ry) { N[  Ry]-p(Ry)N[ RI]-p(Rf)(N[ Rf]-p(Ry)N[ Ry])} 

+ . . .  + (nth term) (3.5) 
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The first term on the right-hand side of equation (3.5) is the number 
of points of Rf in which a preparticle entering in p/ appears. The second 
term on the right-hand side of equation (3.5) is the number of points of Rf 
in which a preparticle of pj appears, once those points of Ry corresponding 
to the first preparticle of p / tha t  we have already considered are discarded. 
The third term in the above summation is the number of points of Rf in 
which a preparticle entering in pj appears, once those points of Rf corre- 
sponding to either of the two preparticles already considered are discarded, 
and so on and so forth. In this way we take into account, first, that the 
same preparticle may enter in more than one point of Rf, and second, that 
if two or more preparticles of pj enter in the same point of RI, this point 
contributes as only one point in the counting of points of the trajectory 

T(pj; Rf). 
Making use of the relation fl(pj; R~) = N[ T(pj; Rf)]/N[ Rf] = g(n)p(Rf), 

we obtain from equation (3.5) 

g(n)=n n(2s- 1) p ( R f ) + . . .  + ( -  1)n- 'pn- ' (Ry)  (3.6) 

The terms in the above equation in which p m(Ry) with m > 1 appears take 
into account that when n = mr(pj) can no longer be neglected vis-/t-vis the 
total number of preparticles entering in the points of Rf, mr(Ry), then the 
probability that more than one preparticle of pj enter in the same point of 
RI cannot be neglected either. Yet, in the most frequent case where 
~rr(pj)<< mr(Ry), the equation (3.6) reduces itself to g(n)= n, and then in this 
case f~(Pi; Rf) = wr(pj)p(Ry). 

Similarly, for a physical system Si in which mr(Si) preparticles enter, 
we can write 

~(S,.; Rf ) = g( mr( S~ ) )p( Rf ) (3.7) 

The energy of a physical system S i in an inertial frame Ry is equal to the 
number of points of the trajectory T(S~;Rf) of S~ in Rf. Denoting this 
energy as E(S~; RI) we may otherwise write 

E( S,; T( S,; ] (3.8) 

When only one particle belongs to S, say Pro, we speak interchange- 
ably of the energy E(Si; Ry) of the system S i = {p,,) or the energy E(pm; Ry) 
of the particle p,,, in the frame Ry. 

Let v(Si; R)) denote the magnitude of the velocity of the system Si in 
the frame RI. We calculate v(Si; RI) from the trajectory of S i in Rf in the 
following way. Recall that T(S~;Ry) is ordered according to the time 
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coordinates in R: of the points belonging to T(Si; R:). As we have already 
explained, T(Si; R/) may be either a partly or completely ordered set, 
depending on whether some of its points have equal time coordinates in R: 
or whether, on the contrary, to each point of T(S~;R:) corresponds a 
different time coordinate in Rf. To calculate v(Si;R:) let us consider the 
graph whose points are all the points belonging to T(Si;Ry), and the 
oriented lines (arrows) joining points of T(Si; R:) occur only between two 
consecutive points. Furthermore, each arrow between two points ends at 
the point with the larger time coordinate. For instance, suppose that all the 
points of the trajectory T(Si;Ry ) are ordered according to their time 
coordinates in Rf. Then the graph of the trajectory T(Si;Ry ) will be a 
one-branch-oriented graph such that there exists only one path of consecu- 
tive arrows that covers completely the graph in question. If, on the other 
hand, there exists a subset t of points of T(S~; Ry) having the same time 
coordinate in P~, then the graph of T(S: Rf) must be ramified in the region 
where the points belonging to t appear. For instance, suppose that t = 
( xi,xi) and that x,, E T( Si; R:) and x b ~ T( Si; R:), respectively, immediately 
precedes and succeeds x i and x / in  the graph of T(Si; R/), and that there 
exists only one such subset t of T(Si;Ry ). Then the graph of T(S:R:) will 
have only one branch from the first point of T(Si; Ry ) to the point xa; after 
that it becomes ramified with two branches passing, respectively, over x,~ 
and ~., immediately these two branches join together at xb; thereafter the 
graph of T(Si;Ry ) has only one branch up to the last point of T(Si;Ry ). 

To calculate the magnitude v(Si; Ry) of the velocity of the system S i in 
the frame Ry we ascribe to each arrow of the graph of T(Si; Ry) a number 
obtained by dividing the spatial increment by the time increment existing 
between the two points joined by the arrow under consideration in the 
frame Ry, and then we average all these numbers. On the other hand, the 
direction of the vector v(Si; Rf) can be found by using the same graph of 
T(Si; Ry) as we have already used to calculate the magnitude of v(Si; R/). 
This can be done by considering the projections of the oriented segments 
of the graph of T(Si; R:) along the space axes associated to R/. Each of 
such projections can be considered as a vector whose direction is defined 
by the order of the two points of T(S:Ry) determining the oriented 
segment under consideration. The direction of v(Si; Ry) will be then given 
by the direction of the vector sum of all such vectors. 

In this way, we ascribe a unique mean velocity to S~ in the frame R e. 
This way of proceeding corresponds well to the usual prescription to 
calculate mean velocities, as becomes apparent in the case where the graph 
of T(Si; R:) appears in Ry as a smooth curve. Yet, our prescription also 
allows us to handle cases where the graph of T(Si;Ry ) appears very 
intricate due to the number and the dispersion of the points of T(Si; Rf) in 
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Ry, a n d / o r  the ramifications that such a graph may present. We are now 
prepared to define what we understand by the mass of a physical system 
s,. 

We say that a physical system S i is at rest in an inertial frame Rf if 
v( Si ; Ry) = O. 

The mass of a physical system S i is the number of points of the 
trajectory T(Si; R:) of S i in the inertial frame R I where Si is at rest. 

Note that we have not used above the term rest mass, but only mass, 
since each time that we will speak of mass it will be understood that we are 
considering the number of points of the trajectory of a system in a frame 
where this system is at rest. 

According to the above definitions, it follows that the energy of a 
system in the frame where it is at rest is equal to the mass of the same 
system. As is well known, this is a feature characteristic of relativity (see, 
for instance, Taylor and Wheeler, 1966, Chap. 2). We will go into a further 
discussion of the relation between energy and mass at the end of Section 4. 

F r o m  the above definitions of energy and frequency of a physical 
system in a reference frame it follows immediately that there exists a 
proportionality relation between energy and frequency of a physical sys- 
tem. From equations (3.7) and (3.8) we can write 

E( Si; Ry)= gO, Tr( Si))P( Rf)N [ Rf] (3.9) 

which, using again equation (3.7), can also be written in the form 

S,; N[ S,; R:) (3.10) 

Note that the function g(n) in equation (3.6) does not appear in the above 
proportionality relation between energy and frequency since it is absorbed 
by the term ~(Si;Ry) in equation (3.10). Therefore, the specific form of 
g(n) given in equation (3.6) does not intervene in the above important 
proportionality relation of our model. The same will occur below with the 
proportionality relation between energy and frequency when both are 
defined locally [see equation (3.11)]. 

Note in relation to equation (3.10) abrve  that according to our 
definition of inertial frame the frequency f~(Sj; R:) will not change when we 
pass from one region of Rf to another. This is a consequence of the fact 
that by our definition of inertial reference frame the intensity I(x;f)  has 
the same value for any point x of Ry, and therefore the probability p(xi; Ry) 
that a given preparticle enters in a point x; of Ry is the same for any other 
point of Ry. In practice we cannot choose a reference frame such that the 
number of preparticles entering in each point of Ry is exactly the same. 
However, we can tend to this ideal by choosing reference frames such that 
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- -a l though the number of preparticles entering in each of their points is 
not exactly equal to each other- -by partitioning Re in equal and 
sufficiently large regions we can mask these fluctuations in the intensity 
I(x; Re), where x ~ Rf. A frame Ry will be nearer to our ideal of inertial 
reference frame inasmuch as these regions in which Re is partitioned can be 
of a smaller extension. The complementary case occurs when systematic 
drifts of the mean number of preparticles per field point appear as we pass 
from one region to another, i.e., when systematic drifts in the mean 
intensity [I(xi;Re ) ]xiEs/occur as we pass from one region R] to another 

region Rf, of Rf. In this case, it is necessary to define a frequency and an 
energy for each region Rf of Rf. This will be done below in the paragraph 
preceding equation (3.11). 

There is another aspect in which noninertial frames play an important 
role in our model. We have defined a trajectory T(Si; Re) as an ordered set 
of points of Re. However, we have not mentioned the effect that the system 
S i may have on the frame Re, an effect arising due to the interaction 
between f=EZ(S ) / - . ,  and f i - -EE(S i ) /~  [i.e., because f tA f i~  Y.Z,(S tA 
S i ) /~  ], f being the field where Re is defined. In fact, we have until now 
implicitly assumed that the system S i is already included in S and that Rf 
still remains an inertial frame. 

To understand the effect that S/ may have in Re consider the field 
f ' --ZZ,(S t_J S i ) /~ .  It is clear that f and f '  may be either very similar or 
moderately different or still very different from each other depending on S 
and S r In connection with reference frames in each of these fields, we 
adopt the criterion that the frame in f '  most closely related to Re is the 
frame Re, determined in f '  by the same sets ~" and e that determine Re in f. 
This is always possible since according to our definition of reference frame 
one has that e, ~" c_ S c_ S U S r Then, the question arises as to which of the 
two frames Re or Rf. is inertial. If we start with an inertial frame Rf we will 
very probably end with a frame Re, that is noninertial because of the effect 
of S i on Re. As we have already discussed at the beginning of this section, 
the field f may be affected in several ways by its interaction with the field 
f i - -Z 'Y(Si) /~ to yield the field f '  = Y-~.(S u Si ) /~ .  In this sense, it may be 
expected that because of the redistribution of the points of crossing in 
different equivalent classes when we pass from Re to Re,, the intensity of f '  
will be for some points larger and for some other points smaller than the 
uniform intensity of f i n  the points of R/(see the definition of intensity of a 
field in a point of a reference frame). This can be understood recalling the 
way in which each point of the trajectory T(Si; Re,) arises. Note that now in 
this trajectory T(Si;Rf, ) we have Re, instead of Re and that although S i is 
again assumed to be included in the physical system producing f '  we open 
the possibility that Re. may be noninertial (and this corresponds well with 
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the usual situation in which it is due to the "presence" of a physical system 
in a frame that this frame loses its inertial character and also that this 
physical system manifests itself in the frame). Recall that a point x'  of the 
trajectory T(Si;Re, ) arises because at least one particle of S i crosses over 
the center of a point of crossing belonging to x' (an equivalence class of 
similar points of crossing) of f ' .  In order to describe the noninertiality of 
Re, due to the interaction between f and f,. yielding f ' ,  let us start from the 
inertial frame Re. Assume that p E S; - S and that p crosses over the center 
of a point of crossing a belonging to a point x of Re. As a result, this point 
of crossing a would become a point of crossing a' with a different structure 
from a (see the definition of a point of crossing and of its structure) and 
belonging to a point x'  ~ Re, which has a different structure from the point 
x of Re. Then, if no other particlep' ~ S i - S interfereswith the points x and 
x' that we have just described, we can say that the point x ' E  T(Si; Re) is 
such that the intensity l (x ' ; f ' )  of f '  in x' is larger than I(x;f) .  Further- 
more, since Re is an inertial frame it follows that l (x ' ; f ' )  is larger than the 
intensity of f in any point of Re if we neglect small fluctuations of the 
intensity of f when we change points in Re. In the same way, there would 
be a point x" E R e, assembling the remainder points of crossing of x once x 
has lost the point of crossing o. The point x" should be such that l ( x" ; f ' )  
is smaller than the intensity of f in any point of Re if we again neglect small 
fluctuations. Then, if both the number of particles of S i and the number of 
preparticles entering in each of them are small in comparison with those of 
Re, we may expect that for each point of T(Si; Re,) there exists a point of 
Re, where the intensity is larger than the mean intensity of f '  in Re,, and 
another point where it is smaller. Although even in this simple case things 
are much more chaotic than what happens with the regular oscillations of 
a moderately intense (electromagnetic) field, we will associate with each 
point of a trajectory T(Si; Re,) an oscillation of f ' .  The situation becomes 
more complicated when the above condition as to the "smallness" of S t 
with respect to Re is not fulfilled, since in this case the action of a particle 
of S i on Re may very probably be either partly or completely destroyed by 
another particle of S;. Because of the above correspondence between 
points of T(Si; Re,) and "oscillations" o f f ' ,  and the fact that for a regular 
distribution of points of T(Si;Re, ) along a time axis of Rf  periodicity 
manifests itself when we pass from one to another point of T(Si; Re), we 
will associate cycles with points of trajectory along time axes in our 
discussion below concerning systems of units. 

Despite its stark simplicity, we should give credit to our model and try 
to interpret the factor N[Re] of proportionality between energy E(Si;Re) 
and frequency f~(Si; Re) in equation (3.10) as the Planck constant expressed 
in the system of units we have been using. Recall that this system of units 
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is such that energy, mass, spatial distances, and intervals of time are each 
expressed as a number of field points. 

To this end, we first adopt the usual convention that all the Ry's that 
we consider as reference frames must have the same number of points. As 
is well known, this is fulfilled by all the frames involved in Lorentz 
transformations. The same applies to the case of Galilean transformations 
since both these transformations establish a one-to-one correspondence 
between the points of different frames. Second, let us denote as N o the 
total number of points of a field f extending over the whole universe, i.e., 
No=--N[f ]. Third, consider a frame R], where f c f ,  coveting a given 
restricted region of consecutive points of the reference frame Ry defined in 
the whole field f ,  i.e., No----N[Rf] and N[Rf]<N o. Fourth, in a similar way 
as equation (3.10) holds for the entire reference frame Rf, we can now 
consider the number N[Ri]~2(Si;Rf) of points of the trajectory T(Si;Rf) 
found in the restricted region R /o f  Ry. Finally, we ascribe to the region Rf 
of Ry the energy that S i would have in a fictitious reference frame Rj, 
having the same number of points as Rf, and such that the density with 
which the points of the trajectory of S i appear in any region of Rj is the 
same as in the restricted region Rf of Ry. We can express this last point by 
means of the relation E(Si; Rf)=(N[Ry]/N[Rf])N[Rf]f~(Si; Rf), i.e., 

E( Si; Rj) = Nof~( Si; R]) (3.11) 

Note in this equation that the frequency f~(Sg;Rf) is defined in the 
restricted region Rf of Ry. Therefore, equation (3.11) is suitable for those 
cases in which we have systematic drifts in the mean frequency when we 
pass from one region to another in a reference frame Ry which is not 
inertial. To be sure, equation (3.11) reduces itself to equation (3.10) when 
such drifts are not present. 

The fact that the number of N O appearing in equation (3.11) may be 
expected to be an extremely large number should not be too surprising 
since we have measured energy, frequency, and time in units completely 
different from those of the cgs system of units in which the Planck 
constant is usually expressed. To further analyze this question we will 
make an assumption on the nature of light which will lead us to assign the 
value 1 to the velocity of light c when both space and time separations are 
expressed as numbers of field points. (For arguments in favor of systems of 
units in which c = 1 of a different nature than those that we will give below, 
see Taylor and Wheeler, 1966, Chap. 1.) Before going into this question, 
and in order to have a rough idea of the relation that exists between the 
cgs system of units and the system of units in which energy, space, and 
time separations are expressed in numbers of field points, let us call Nero 
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and N, the number of field points covering respectively 1 cm along a row 
of points and 1 seg along a column of points of a reference frame 
represented with the same conventions as in Figure 1. Also let Ng be the 
number of field points corresponding to an energy (expressed in mass 
units) of 1 g. Then, comparing equation (3.tl) with the equation E=hv 
under the form 

ENc2 g=hNgNc=cNem (3.12) 

we get No=(h/c)NgNcm. Assuming the mass of the universe ~1055 g and 
its radius ~,102s cm, we obtain the value Noel03~176 Ng~10245, Nem~1072, 
and N~=cN~m~IO 82, all these numbers being expressed in field points. 
Below, we will come again to the relation N s = cNr 

Briefly, if in our model we interpret equations (3.10) and (3.11) as 
equations of the type E = he, this leads us to relate the Planck constant 
with the total number of field points that has a reference frame extending 
over the universe. In this view, the Planck constant is connected with a 
macroscopic property of the universe rather than with its structure at the 
microscopic level. Let us point out that our assumption according to which 
the number N O of points of a reference frame Ry extending over the whole 
universe is constant, is compatible with models of the universe in which its 
size changes with time (e.g., the model of the expanding tmiverse). This 
compatibility is based on the fact that the change in size of the universe 
with time can be translated in our terms as a change of the maximal space 
separation that can be defined within By as we consider different lapses of 
time within the same By. While, on the other hand, the constancy of N o 
refers to the fact that the total number of points of By O.e., taking into 
account all possible space separations and time durations within By) is 
constant. 

Consider a frame By whose space-time diagram only has one space 
axis, as in the case illustrated in Figure 1. For arbitrarily chosen physical 
systems Si, the most probable distribution of the points of trajectories 
T(Si; By) in the frame By will be those in which the points of the trajecto- 
ries are uniformly distributed in By. This results from the fact that what is 
important to the location in By of a point of a given trajectory T(Si;BY ) is 
that the point of By in question: shares at least one preparticle with S r And 
this does not depend upon the way in which the points of By are connected 
to each other, which is the trait distinguishing time and space separation in 
our definition of reference frame. In this sense, recall that time separations 
are measured along trajectories T/,pCz, and space separations are 
measured along rows of points, each one belonging to a different trajectory 
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Tpf,p E~'. Thus, the points of a trajectory T(Si;Ry ) of a sufficiently large 
and randomly chosen system S i are not distributed preferently along either 
the space of the time axes. This leads to the result that the mean velocity 
produced by all those points of T(Si;Rf) corresponding to displacements in 
one direction will be unity. 

More generally, consider a region Ry' of a frame Rf and let the 
space-time diagram associated to Rj be such that it necessarily has one 
time axis and at least one space axis, each of these axes covering the same 
number of points of Py. In the particular case of Ry illustrated in Figure 1 
the region/~ of Ry fulfilling the above conditions necessarily has one time 
axis and one space axis. 

We assume that light in a region 1~ of Ry is a physical system S i such 
that the points of the subset T(S~; Ri)C_ T(Sg; Ry) are randomly distributed 
in the region Ri of Ry. [For a definition of light see a previous paper in 
which we discuss some properties related to the invariance of the velocity 
of light (Garcia-Sucre, 1978b).] This is dearly an oversimplified description 
of light since we have mentioned only one trait which cannot by itself 
characterize an electromagnetic radiation field. However, we are assuming 
that the above description of light does point to a property of light, this 
being the only one that proves relevant to our discussion. This recalls what 
occurs with special relativity, where the only property of electromagnetic 
radiation playing an essential role in the elaboration of the mechanics of 
neutral bodies is the invariance of the velocity of light. On the other hand, 
we will see below that the property that we have ascribed to light in 
connection with the region Rj of Ry above leads to the invariance of the 
velocity of light provided that we interpret this velocity as a mean value. 
With this interpretation, if Ry' is small enough so that the number of points 
of the trajectory T(Si;Ry ) falling in the region R] is not too large, then 
fluctuations of the velocity may arise. This means that depending on the 
number of preparticles entering in the system S i we can always choose 
regions R] sufficiently small so that fluctuations of the velocity around the 
mean velocity corresponding to a large region of Rf become sizable. In this 
sense, although our model stipulates that the velocity of light is invariant if 
sufficiently large regions of Ry are considered, fluctuations around this 
mean velocity may be expected when we are concerned with sufficiently 
small regions of Ry. Experiments to measure the velocity of light using both 
a very low intensity (Garcia-Sucre, 1978b) and a very low frequency 
electromagnetic radiation could be a test for our assumption on the nature 
of light. 

In the examples under consideration, Ry only has one space axis and, 
therefore, the velocity v(Si; Ry) will be a vector of magnitude v(Si; Ry) along 
the unique space axis of Ry. Furthermore, given that the points of the 
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trajectory T(Si;Ry ) are randomly distributed in the whole of Ry, the 
magnitude v(Si; Ry) vanishes because the left-to-right velocity contribution 
to v(Si;Ry ) is compensated by the velocity contribution in the opposite 
direction along the unique space axis of R/. (A similar situation occurs in 
the case of an isotropic radiation field in which the wave-front velocity in 
one direction is canceled by the wave-front velocity in the opposite 
direction.) 

Consider now two inertial frames R/and /~y with associated space- 
time diagrams as illustrated in Figure 2. The axes x, t and x', t' in the 
figure correspond to the space-time diagrams associated to Ry and /~f, 
respectively. Let T+(Si; Rf) be the subset of T(Si; Rf) in which the order of 
the elements of T(Si;Rf) is preserved [i.e., x,y~T+(Si;Rf) and x-<y 
implies that x-<y in T(S~;Ry)] and such that every pair of consecutive 
points of T+(Si;R) corresponds to a positive displacement along the x 
axis. Similarly, one can define a T_(Si;Rf) corresponding to negative 
displacements along the x axis. For random distribution of points the 
velocity v+(S; Ry) corresponding to T+(S;; Ry) is equal to unity, since every 
pair of consecutive points of T+(S~; R/) defines a segment that determines 
an angle between 0 and ~r/2 with the x axis, and every such angle equally 
contributes to the mean value v+(Si;Rf) when one averages all pairs of 
consecutive points of T+(S;Ry). Note that segments determined by con- 
secutive points must be directed from the point with the smaller time 
coordinate to the point with the larger time coordinate. Let us emphasize 
that the angle between the x axis and any segment determined by two 
consecutive points of T+(Si; Ry) cannot have a value between ~r/2 and ~r 
because in that case this pair of points will necessarily correspond to a 

~t 
t' 

/ / /  

Fig. 2. The pairs of axes x, t and x',  t ' in this figure constitute the space- t ime diagrams 
associated with two one-dimensional reference frames R /and /~ f .  The long track and  shorter 
track dashed lines in this figure stand for trajectories having a well-defined velocity equal to 

~ 

unity (c = 1) in R / a n d  Rf, respectively. These two dashed lines do not coincide because in this 
figure 0verb. In the case of special relativity 6 =  -q~. 
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negative displacement along the x axis. Thus, the directed segments 
determined by consecutive points of T+(Si;Rf) have a direction necessarily 
comprised between the directions of the x axis and the t axis. The same 
applies to the space-time diagram with x' and t' axes. In this case, the 
directed segments between consecutive points of T+(S:/~) have directions 
comprised between the directions of the x' axis and the t' axis, since any 
other direction would correspond !o a negative displacement along the x' 
axis. Therefore, taking into account that the directions of the segments 
determined by pairs of points belonging to T+(Si;Rf) are randomly 
distributed between the axes x' and t', it follows that also v+(Si;/~y)= 1 in 
the frame/~. Note that the value v+(Si; R:)= 1 does not correspond to the 

same direction than the value v+(Si; if, c)= 1 in Figure 2 where they have 
been respectively represented by the long track and shorter track dashed 
fines in this figure. These two directions in Figure 2 do not coincide 
because in this figure 0~ff. The points of the trajectory T(Si;Ry ) of a 
system S i having a well-defined velocity equal to unity in Rf would appear 
all along a line bisecting the angle subtended by the x' and t' axes. 
Equivalently, the points of the trajectory T(Si; R I) of a system S i having a 
well-defined velocity equal to unity in Rf determine a line bisecting the 
angle subtended by the x and t axes. Therefore, for these two lines to 
coincide it is necessary that 0 = -~? in Figure 2. Although in our model all 
possible values of 0 and q~ are compatible with the invariance of the 
velocity of light when one interprets it as an average velocity, we will 
discuss below the particular case of 0 = -q~ in order to make a comparison 
between our model and special relativity. 

Following the above line of thought we then assume that the velocity 
of light in vacuum is equal to unity when both space and time intervals are 
expressed as numbers of field points. This assumption immediately leads to 
N~ = entre, where N s and Ncm are numbers of field points covered by 
intervals of 1 see and of 1 cm, respectively, and c is the velocity of light in 
vacuum expressed in cgs units. In other words, the value e ~ 3 •  101~ 
cm/seg could be interpreted within the framework of our model as a 
consequence of the fact that one second is much larger than one centime- 
ter when both are expressed in terms of the same unit, namely a field 
point. 

If we accept this conclusion, given that the choice of a system of units 
is a matter of convention, the feature mentioned above could be related to 
a property of riving organisms, a particular class of which are humans, who 
have created according to their scale of distances and durations the known 
systems of units suitable for macroscopic physics. Only after the advent of 
quantum mechanics appropriate to describe atomic and subatomic physics, 
have other systems of units made their appearance. It is well known in this 
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concern that the system of units in which c = h--1 is precisely one that 
leads to the stating of fundamental equations of physics in their simplest 
and most elegant form (see, for instance, Whichmann, 1971, Chaps. 2 and 
5). This could be fortuitous; yet, f rom our point of view, it is a further 
indication that the convenience of fixing c = 1 is rooted in something more 
profound than a simple convention. In connection with h = 1, recall that 
h = c = 1 allows us to express mass, energy, momentum, and frequency as 
the inverse of a distance. This can be expressed in our model by writing 
equation (3.10) in the form 

E( Si; Ry) = ~o( Si; Rf) (3.13) 

where J~(S;; Rf) = E(Si; Rf)/# a, ~(Si; Rf) = 2~rf~(S;; Rf)t~a, N[Ry]/2~rg z--  1, 
and #a is a unit of both distance and time (c = 1) covering a fixed number 
of field points. By taking h = 1 we then identify energies with frequencies, 
which come near to our definition of energy as a number of field points. 

Let us go back to the question of why the Planck constant would have 
such an enormous value when expressed in our units, in contrast with the 
very small value that it effectively has in cgs units. From our point of view 
this can be understood as follows. When we use cgs units the left-hand side 
of the equation E - h v  is expressed in ergs, a unit corresponding to an 
already enormous number of field points. Therefore, the microscopic 
texture of the set T(Si; R:) of field points as it appears in the frame R: is 
hidden when E(Si;R:)=N[T(Si;R:)] is expressed in ergs. Precisely the 
contrary occurs with the fight-hand side of the same equation E = hv when 
v is expressed in terms of cycles per second. In this sense, recalling our 
reasoning in favor of a one-to-one correspondence between cycles and 
points of trajectories, the texture of T(Si; R:) in Ry should be revealed all 
along an interval of time of a second, which, according to our previous 
discussion, covers an extremely large number of field points (N s = cNr 
10 s2 field points). Therefore, the energies in cgs units may be expected to 
be numbers of very small magnitude in comparison with the corresponding 
frequencies expressed in cgs units, and this must be compensated by the 
constant h in the relation E = hr. 

Let us now define what we understand by momentum of a physical 
system in an inertial frame. Let v(Si; R:) denote the velocity of the system 
S i in the frame R:. 

The momentum o(Si;Rf) of S i in an inertial frame R: is given by 
E( s,; R:) v( S,; R:). 

From the fact that E(Si; R:) is equal to the number of points of the 
trajectory T(Si; R:), and from the way in which we have defined v(Si; R:), it 
follows that the momentum E(Si;R:) v(Si;Rf) can be seen as the rate of 
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transport of the energy of S i in Rf. It is well known that the relation 
between energy and momentum in relativity can be expressed under the 
form p =  Ev in a system of units where c =  1. This way of defining 
momentum is particularly suitable because of the intuitively clear relation 
between energy and momentum that p = Ev immediately suggests (Taylor 
and Wheeler, 1966, Chap. 2). 

Within the framework of our model we can give still another interpre- 
tation to the concept of momentum of a system S i in an inertial frame RI. 
First, consider a partition of trajectory set T(Si; Ry) in two sets TI(S,.; Ry) 
and To(Si; R/) such that the points belonging to TI(Si; Ry) contribute with 
the mean value 1 to the velocity v(Si; Ry), while those points belonging to 
To(Si; Ry) contribute with the mean value 0 to v(Si; Rf). We call TI(Si;Ry ) 
the motion-set trajectory of S i in Rj. Then, it can be shown that p( Si; Rf) is 
precisely equal to the number of points of TI(Si;RI ) for any physical 
system S i such that v(S~;Ry)<I. In order to see this, we can write 
according to the definition of T1(Si; Ry), the relation 

1 
v i --1 (3.14) 

Npi=l 

where Np = N[TI(Si; Ry)] and every v i corresponds to a pair of consecutive 
points of TI(Si; R]). We can similarly write 

Ne 
1 Z vk=v(S,;Rj) 

NE k=I 
(3.15) 

where N e =.N[T(Si; Rf)] and every v k corresponds to a pair of consecutive 
points of T(Si;Rf). From equations (3.14) and (3.15) it follows 

1 ~ vj+ 1 
NE j : l  ~ i:l ~ vi=l)(ai;Rf) (3.16) 

where every vj corresponds to a pair of consecutive points of To(Si; Py). 
Recalling the definition of To(Si; Ry) according to which ZJYg~'N, vj=0,  we 
obtain from equations (3.14) and (3.16) that 

Np= NEv( SI; Rf) (3.17) 

Therefore, from Np =N[TI(Si;Ry)] and our definition p(Si;Ry)= 
E(Si; Rf)v(Si; Ry) we can finally write 

P( Si; Ry)= N[ TI( Si; Rf) ] (3.18) 



760 Garcla-Sucre 

This property of our definition of momentum immediately suggests 
the following definition of wavelength of a physical system in an inertial 
frame: 

The wavelength X(Si; Ry) of aphysical system S i in an inertial frame Ry 
is equal to the mean distance in Ry between points belonging to the 
motion-set trajectory TI( Si; Ry). 

Here we will again have a mean value and a standard deviation for 
the wavelength and thus we will speak of well-defined wavelengths when 
the corresponding standard deviations vanish. Besides its intuitive char- 
acter, the above definition has the virtue of leading immediately to a de 
Broglie type of relation between wavelength and momentum. This can be 
easily seen starting from the equation 

N[ TI(S,; Rj) ] X(Si; RI) = 1 (3.19) 

which simply states that the probability N[TI(Si; Rf)]/N[Ry] that an arbi- 
trary chosen point of Ry may belong to TI(Si; Ry), multiplied by the mean 
separation between points of T1(Si; Ry) in Rj must yield unity. Therefore, 
from equations (3.18) and (3.19) we obtain 

N[ Py] (3.20) 
x(s; ,  Rj) = p(S,; Rj) 

In the same way that equation (3.10) appears as the equation E=he  by 
assuming N[Ry] = N O = h, where h is expressed as a number of field points, 
the above equation 0.20) appears as the de Broglie relation using the same 
assumption. 

Let us remark here that according to our definitions of wavelength 
and inertial frame the mean wavelength does not change when we consider 
different regions of Ry, which is what we could expect to occur in inertial 
frames as theY are usually defined. We have already made a similar remark 
in connection with frequency and inertial frame. On the other hand, our 
definitions of both frequency and wavelength can be generalized to the 
case of a noninertial frame, in which case frequency and wavelength 
should depend upon the region of the noninertial frame under considera- 
tion. This can be understood since noninertial frames are such that the 
number of preparticles entering in each of its points may change apprecia- 
bly when we pass from one region to another of such a frame. 

Until now in this section we have been mainly concerned with 
features of physical systems related to the delocalized aspect that they may 
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present in reference frames. For  instance, we have defined frequency and 
wavelength of a physical system in a frame. Let us discuss at present how a 
physical system may be localized in a restricted region of a frame by the 
agency of a "detector" physical system. 

Consider again the fields f = E Z ( S ) / ~  and f'=~,Y.(SuSi)/~ in 
which P,r and Ry, are defined by the same pair of sets e and ~-. We say that 
S i is a detector physical system if it fulfills the condition that when we pass 
from a frame Rj to a frame Rj, there exists at least a physical system Sa, 
which not being localized in Rj is localized in Rf, for a given interval of 
time larger than a prefixed threshold. This can be also expressed by saying 
that while the trajectory T(Sa;Rr is not spatially narrow in Rj for any 
interval of time larger than a prefixed threshold, the trajectory T(Sa;Ry,) 
does present such a narrow region in Rj,. Of course, in real situations we 
do not have the possibility of passing from RT to Rf, because we always are 
so to speak in Rf, in which both the detector and detected systems are 
already included. As is usual, the frames Ry and Rj, are used to indicate 
that Rf, is appreciably different from Ry only in the region of R/, where 
either the detection of a given physical system (S a in our example) takes 
place, or where noninertial effects such as forces manifest themselves, etc. 

The way in which the system S~ behaves as a detector in the above 
description can be understood by the same kind of argument that we have 
already given in connection with the way in which a given physical system 
modifies an inertial frame to yield a noninertial one. First, recall that R~ 
and Rf, are respectively determined in f and f '  by the same pair of sets e 
and ~'. When we pass from f = E E ( S ) / ~  to f ' = Z E ( S  U S i ) /~  the par- 
tic]es of S i may modify the structure of the points of crossing of S. Assume 
that this is the case. Then, given that the points of f and f '  are equivalence 
classes of points of crossing with respect to the relation ~ of similarity or 
of equal structure between points of crossing, the above modification of 
structure will produce either a redistribution of the modified points of 
crossing between the points of f to yield points of f ' ,  or the appearance of 
points of f '  with a different structure from that of any point of f.  This will 
correspond to a redistribution of the preparticles entering in the points of 
Ry giving rise to the points of Rf,. Because of this redistribution of 
preparticles in passing from Rj to Ry, and recalling that in our model the 
appearance of a point of the trajectory of a physical system S a in a frame 
Ry depends uniquely on the condition that preparticles entering in S a also 
enter in the point of Rf in question, we can finally understand that 
although T(Sa;RI) appears always delocalized in Ry the trajectory 
T(S~;Rf,) may appear localized at least for a given interval of time. Note 
that in practice when we choose a physical system S i as a possible detector 
we do not know this system in detail, we only know certain macroscopic 
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features of it. Neither do we know in detail the system S producing the 
field E Z , ( S ) / ~  in which the frame R[ is defined. Therefore, we do not 
either know the detailed way in which the field f / =  EY. (S i ) /~  will modify 
the f i e l d f = E E ( S ) / ~  to yield the f ie ldf '  = E E ( S  U S i ) / ~  above. Then, in 
practice, when we choose a S i as a possible detector it occurs that although 
we may expect that Si will serve to detect a physical system S a we do not 
know in principle which one will be detected. 

Finally, we may say that when a physical system S a has been localized 
in a frame Rf, by the action of a detector S i, then Sa manifests itself in Rf, 
as a "particlelike object." If, otherwise, no such localization occurs, then S~ 
appears in Rf, as a "wavelike object". 

A more complete treatment of the problem of the detection of 
particles, or more generally of physical systems, within the framework of 
our model, will be made elsewhere. 

As the last point of this section we will briefly discuss whether 
uncertainty relations of the same kind as the Heisenberg relations can be 
stated in our model. Given our definitions of energy, frequency, momen- 
tum, and wavelength of a physical system in a frame, the usual argument 
- -accord ing  to which the more localized a particle the less well defined its 
wavelength--applies also to our  case. This argument is based on the fact 
that the wavelength is well defined only for a wave being both regular and 
of infinite extension in space. In more quantitative terms, assume that for a 
wave of wavelength X and having regular oscillations in space within a 
region of extension n~ (n an integer), and vanishing outside this region, we 
may write A ~ / X ~ I / n .  [For a more complete exposition of this argument 
see Wichmann (1971, Chap. 6).] Then, from equation (3.20) it follows that 
A X / X = A p / p .  Using again equation (3.20) together with A x ~ n X ,  we 
obtain ApAx~N[Rf]  = N o. The case in which we maintain that the wave 
does not vanish only within an extension of nX, but  omitting the condition 
concerning the regularity of the wave, will correspond to ApAx > N  o. We 
then may write the relation ApAx >~N o. On the other hand, following 
similar steps one also arrives at AEAt>~N o. Note that in both these two 
relations N O plays the same role as the Planck constant in Heisenberg 
uncertainty relations. One may check that although N 0 ~  103~176 according to 
our rough evaluation above, if we express Ap and Ax as numbers of field 
points in ApAx >~N o, we obtain that the equality ApAx = N o stands only 
when Ap and Ax are very small with respect to the number of field points 
equivalent to the cgs units of momentum and distance. The same occurs in 
the case of AE and At in connection with the relation AEAt >N o. 

We have mentioned in Section 1 that in the present paper our 
assumption stating that the total number of preparticles of the physical 
world is finite, is in our model related to a general property of physical 
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systems. This property consists in the fact that energy and frequency are 
proportional to each other, the constant of proportionality being finite. 
The finiteness of this constant of proportionality leads immediately to the 
conclusion that a finite energy corresponds to an equally finite frequency. 
Yet, this very simple conclusion already considered as a "fact of life" in 
quantum physics would not be verified in our model, unless we either 
introduce the assumption of the finiteness of the total number of prepar- 
ticles, or we consider that the intensity of relevant fields is infinite at every 
point (this last possibility will considerably complicate our model by the 
handling of infinite quantities associated to every point of a field). This 
follows immediately from equation (3.1), which yields that p(xi; Ry)= 0 for 
every point x i of Ry if the intensity l(xi; Ry) is finite and we assume that 
N[B] is an infinite number. Then, equations (3.2), (3.7), and (3.10) would 
imply that to any finite energy corresponds a zero frequency. Therefore, 
according to this argument we have made the choice of postulating in our 
model that the total number of preparticles in the physical world is finite. 

In this section we have defined energy, momentum, frequency, and 
wavelength of a physical system in a given frame. We have shown that 
propor t iona l i ty  relat ions energy cc f requency  and m o m e n t u m  cc 
(wavelength) -1 are valid in our model and that both proportionality 
relations become equalities using the same proportionality constant, which 
we have interpreted as the Planck constant. Then, the question naturally 
arises whether according to our definitions of energy and momentum these 
quantities are conserved in the usual sense. This we will answer in the 
affirmative in the next section. Also we will show that the relativistic 
relation between energy,-momentum, and rest mass is compatible with 
our model. 

4. ENERGY AND M O M E N T U M  CONSERVATION 

Let us start by asking why a particle or system of particles may be 
such that the points of their trajectories spread over an arbitrarily large 
lapse of time in a frame Rf. This is the same as asking in the case of a free 
particle why this particle will appear in Rf at all times, although the 
number of the preparticles entering in this particle is fimte and even not 
necessarily very large. The answer to this kind of question is that because 
one and the same preparticle may belong to more than one field point of 
Rf (see Section 3) and that preparticles are randomly distributed over the 
points of Ry, the same preparticles will appear again and again in points of 
Rr as larger regions of Rf are considered. Since, on the other hand, the 
condition for a point x o f f  to belong to a trajectory T(S,.; Ry) is that S and 
the point x ~ f  share at least a preparticle, it follows that even if the 
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number of preparticles entering in S is not very large the points of 
T(Si;Ry ) may spread over the whole of Rf. The difference between two 
trajectories T(Si; R/) and T(Sj; Ry) such that many more preparticles enter 
in S i than in Sj, will reside in the density with which the points of T(Si; Ry) 
will appear in R/wi th  respect to the density corresponding to T(Sj; R/). In 
the first case the density will be considerably larger than in the second 
case, but in both cases the points of the trajectories will spread over the 
entire Ry. Keeping this in mind, let us analyze the energy and momentum 
conservation. 

Once we specify a system Si and a reference frame Ry with f =  
Y~Z(S)/~, the energy of S i in R/is  determined according to our definition 
of energy by N[T(Si;Ry)] [see equation (3.8)]. The usual sense in which 
energy is conserved can be expressed in our terms as follows. Consider a 
particular time t=t o in the frame Ry and call T<(Si;Ry) the subset of 
T(Si; Ry) such that every point belonging to T<(Si; Rf) has a time coordi- 
nate t<t o. In the same way, consider the set T>(Si;Ry) of points whose 
time coordinates are equal to or larger than t 0. Assume that Ry is inertial 
and such that there are very many points in the time axis of R/correspond- 
ing to time coordinates both smaller than t o and larger than t o . Then, 
according to our definition of inertial frame it follows that we can infer the 
energy of S i in R/by considering only the points of either T<(Si; Ry) or 
T>(Si;Ry ). For example, this energy can be obtained by multiplying 
N[T<(Si; Ry)] by the ratio NIRj]/N[Rs<I, where N[Ry<] is the number of 
points of FLy having time coordinates smaller than t o . This can be easily 
understood recalling our definition of inertial frame and that a point x of a 
trajectory T(Si;Ry) occurs when a preparticle entering in S i also enters 
in the point x of Ry, and that preparticles distribute themselves randomly 
in the points of Ry. Recall that according to our definition of inertial 
frame the number of preparticles entering in different regions of Ry 
covering the same number of field points is the same, apart from fluctua- 
tions which become negligible when sufficiently large regions of R/ are 
considered (see Section 3). Then, the density of points of T(S i, R/) in Ry 
can be considered to all practical effects identical to the density of points 
of T<(Si; Ry) in the region of Rf corresponding to time coordinates smaller 
than t 0, since this region of Ry is assumed to be very large. Equivalently, 
the density of points of T(Si; Rf) in R / i s  equal to the density of points 
T>(S~;Ry) in the region of Ry where points have equal or larger time 
coordinate than t 0. One consequence of this is that the energy E(Si; Ry) can 
also be calculated considering only the points of T>(SI;Ry) according to 
the formula 

N[ R/] (4.1) 
E( Si; Rf)= N[ T>( Si; Rf) ] N[ Rf> ] 
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The fact that we obtain the same energy when considering either of the 
two partial trajectories T<(Si; Rf) or T>(Si;Rf) allows us to say that the 
energy of S; in Rf is conserved in the usual sense. Another way to express 
this is that the frequency calculated from T<(Si;Rf) is equal to the 
frequency calculated from T>(S/; Rf), as follows directly f rom our discus- 
sion above. Note that what becomes essential to energy conservation here 
is that the reference frame R/ under consideration be inertial, which, 
according to our definition of inertial reference frame, can also be inter- 
preted as a homogeneity condition. In turn, this homogeneity condition is 
fulfilled only if the intervals of time both before t = t o and after t--- t o that 
we consider are sufficiently large, since in the opposite case differences 
between the number of preparticles involved in different regions of Ry 
covering the same number of field points, but occurring respectively before 
and after t = t o in Rf, may be important. This is equivalent to saying that 
energy conservation can be violated for sufficiently short intervals of time. 

The above discussion applies also in the case in which we are 
concerned with more than one physical system S;. Let S~ and Sj be two 
physical systems and consider the energy E(S; Rf) of the system S = S i U Sj. 
Assume that the trajectories T(S~; Rf) and T(Sj; Ry) appear quite separate 
in Ry except in a small region of Rf whose points have time coordinates 
closely around t =  t 0, and where these two trajectories cross each other. 
Then, our argument above applies again to this case and leads us to say 
that the energy of the global system S =  SiU Sj. is conserved in the 
"process" of intersection between trajectories T(S~; Ry) and T(Sj; Ry). More 
generally, the same applies when one is concerned with an arbitrary 
number of physical systems. 

The argument in favor of the momentum conservation in our model is 
more intricate than the one we have given above for the energy conserva- 
tion. Let us analyze this problem for the case of an inertial frame Rf such 
that the space-t ime diagram associated to it has only two space axes, 
which we label x and y. Then consider the collections C~ and C, of all the 
systems which have in Ry a momentum pointing along the positive direc- 
tions of the x a n d y  axes, respectively. Let us now denote as ~r(S) the set of 
all the preparticles entering in S. Consider a physical system S a and select 
from C x the set Sxa the most similar to S a in what concerns the preparticles 
entering in Sxa  and S~. Then let us define the set ~r(Sx~)U ~r(S~)- ~r(Sx~ ) N 
~r(Sa)-~r:, , such that the number of preparticles belonging to ~r~a measures 
the extent to which the sets rr(Sxa ) and ~r(Sa) are different f rom each other. 
In the same way, we can choose from Cy the set Sy,, the most similar to S, 
and define a set ~ry~. According to the definition of Cx, Cy, Sxa, Sya, rrx,,, 
and qTy a it follows that if ~rx~ =q~ the momentum p(Sa; Rf) points along the 
positive x axis, if q'l'y a =~ then p(S,,;Rf) points along the posit ivey axis, and 
if rr~=/=~ and ~ryg=~ then P(Sa;Rf) points in a different direction than x 
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and y. Now, consider here again as in our discussion on the conservation 
of energy an instant t = t o and the two regions R: whose points have time 
coordinates respectively smaller than t o and equal or larger than t o . Denote 
these regions Rf< and Ry>. The sets T<(S,,;Rf) and T>(Sa;Ry ) will be 
subsets of the trajectory T(Sa;Ry) having as elements the points of 
T(Sa;Rr) with time coordinates either smaller or larger than t 0. Then 
V(Sa;Ry<) and V(Sa;RI> ) will be velocities corresponding respectively to 
the points of the subsets T<(S,;Rf) and T>(S,,;Ry) of the trajectory 
T(S,; R:), to which correspond the velocity v(S,; R:). We can now ask how 
long must a lapse of time in R: be in order that differences in direction and 
magnitude between v(Sxa;Ry ) and v(Sa,Ry) due to ~rxaV~, and between 
V(Sy,; Rr) and v(S,; Ry) due to  71"ya:r/=d/~ may clearly manifest themselves. The 
answer is that since preparticles distribute themselves randomly in the 
points of Ry, and that in such points enter the same number of preparticles 
when this number is averaged over a large region of R:, then by consider- 
ing a sufficiently long lapse of time the relations between the vectors 
v(Sxa" ~ Rf), v(Sya; .Rf) and v(S~; R:) appear clearly as if we had considered all 
the time axis of Rf, i.e., all the point of Ry. As a consequence, the momentum 
calculated according to any of the expressions p(Sa;Rf<)=E(Sa;Ry<) 
V(Sa; Rf<), P(Sa; Rf>) = E(Sa; Rf>) V(Sa; Rf>) or p(S~; R:)= E(S~; RI) 
v(S~; Rf), has the same value provided that sufficiently long lapses of time 
are considered both before and after t = t 0. 

Following a similar argument as above we can also say that the 
magnitude of p(S,; Rf) is a measure of the extent to which the preparticles 
entering in S, are different from those entering in a system So, selected as 
the most similar to S~ from the collection C O of all the systems appearing 
at rest in Rf. Note the contrast with the energy E(Sa;Ry) which appears to 
be related with the number of preparticles entering in S, and the average 
number of preparticles entering in one point of Rj. 

As the last point of this section let us describe how in the present 
model it is possible to see the change of the energy of a system S i in an 
inertial frame Ry due to the interaction of S i with  another system Sj. To 
this end, consider the trajectories T(S:Ry), T(Sj;Ry) and T(S;R:), where 
S---SiO Sj. Assume, in addition, that T(S~;Rf) and T(Sj;Ry) cross each 
other in the region of Ry around the point with coordinates (x 0, to). When 
such crossings occur the question arises as to whether the representation of 
T(S; PT) in the space-t ime diagram associated to Ry is so different from the 
simple superposition of the respective representation of T(Si;Ry ) and 
T(SfiRy) that T(S;Ry) cannot be described even roughly in terms of 
T(Si;Ry) and T(Sj;Ry). As an example of such crossings we can think of 
the collision occurring in Ry between two physical systems respectively 
represented by S i and Sj. If the collision does not involve too much energy 
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then we are concerned with the same particles or systems during the whole 
process and the changes occurring are ascribed to variations in the energies 
and momentum of these particles or systems. As is well known, when 
exchanges of energy are either comparable or larger than the rest energy of 
the colliding particles, then we cart no longer say that we are concerned 
with the same particles in the whole process. Since we are discussing the 
change of energy of a physical system due to interactions with the systems, 
we are more concerned with the first case. Thus, we assume that the 
trajectory T(S; Ry) is such that before t = t o the points of this trajectory can 
be separated in two subsets TSi< and TSj< and after t = t o in the two 
subsets TSi> and TSj>; also that TSi<t..J TSi> and TSj<t2 TSj> can be 
unambiguously ascribed to S i and Sj, once the interactions between these 
systems have been taken into account. One criterion to decide what we 
ascribe to S i and what to Sj in the trajectory T(S; Ry) could be the way in 
which the points of this trajectory distribute themselves in Rf. In the 
present paper we have not faced the problem of which are the probability 
distributions appropriate to describe different cases of trajectories T(S; Ry). 
If nonuniform distributions are allowed then one criterion to follow is to 
consider regions of Ry surrounding loci of maximum density of points of 
T(S; Re). Assume in our example above that we represent in the space-  
time diagram of R/ only those points of trajectories falling in regions 
around in which the density of points of T(Si; Ry), T(Sfi Ry), and T(S; Rf) 
present maxima. Then one possibility is that T(Si;Rf) and T(Sfi Ry) may 
each appear as a stripe of points in the space-t ime diagram associated to 
Rf, and T(S; Rf) as two stripes of points crossing each other in Ry and 
respectively similar to those corresponding to T(Si; Pc) and T(Sfi R/). 

Let us consider that the set of points TSi< above is such that the 
velocity corresponding to it is zero in Ry. If the velocity corresponding to 
TSi> is equal to v :~ 0 we say that before t = t o the system S; was at rest in 
Rf and that after the crossing with Sj which occurs at t = t o the system S~ 
acquires the velocity v. In the same way, the energy of S~ before t = t o will 
be N[TSi< ] N[Ry]/N[Ry<]-~NM, and N[Si> ] N[Rf]/N[Ry>]..=NE after 
t = t o, where N[Rf<] and N[Ry>] are the number of points of the regions 
Ry< and Ry> corresponding to all those points of Rf with t < t  o and t > t  o, 
respectively. A simple mean-value calculation, which does not take into 
account the shape of the appropriate probabilistic distribution of the 
points of trajectories in P,y, but only the corresponding mean values, can be 
the following one: 

NMO "t- N Ajzot = NEv (4.2) 

where N e is the energy of the resulting system after the interaction has 
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taken place. The number NAg ~NE--NM is the number of points of the 
trajectory of the resulting system after t =  t o which are in excess with 
respect to the numbers of points of the trajectory of the original system at 
rest in Ry. In this oversimplified view of energy transfer to a physical 
system it is assumed that all the points of the trajectory of the system 
originally at rest in Ry plus some or all the points of the trajectory of 
another system [there are NAg of such points in equation (4.2)] belong to 
the trajectory of the resulting system; the number NaE being the energy 
transfer to the system originally at rest in Ry. Then a in equation (4.2) 
stands for the mean contribution to the velocity v of the resulting system 
coming from those points of its trajectory arising due to the energy 
transfer. A first guess could be ct = 1, which is equivalent to saying that the 
subset of the trajectory of a system corresponding to the energy transfer to 
another system behaves as light in the sense that the points corresponding 
to the energy transfer are randomly distributed. The assumption a- -1  
together with equation (4.2) lead immediately to Nae=Nev which is 
equivalent to saying that Nag is the magnitude of the momentum of the 
resulting system after t = t 0, since N e is the energy of such a system and we 
have the relation p=  Ev, according to the definition of momentum (see 
Section 3). On the other hand, following the oversimplified model of 
energy transfer here analyzed we also have 

NM + Nae = Ne (4.3) 

which together with equation (4.2) and a = 1 yield N E = NM/(1 -  v) and 
NAg= N m v / ( 1 -  v). Since, on the other hand, for the case in which the 
resulting physical system has a velocity along the negative direction of the 
x axis of Rf such that equation (4.2) becomes NMO + Nae(-- a) = NE( -- v), 
then we can write E=M/(1-1v[) and p=Mv/(1-1v[), where M = N  M 
and E = N E. Note that these two relations for energy and momentum lead 
to M +  [p[ = E and that this linear relation between E, [pl, and M is not 
acceptable with relativity. As is well known, this condition of compatibility 
is fulfilled by M 2 + p  2= E 2. However, the above expressions for E and p 
present the features of special relativity of yielding E =  M and p = 0 when 
v = 0  and E = p = ~  when [vl---1. On the other hand, p=Mv/(1-lvl) 
reduces itself to the Newtonian expression p = M v  in the case that Ivl<<l, 
but unfortunately, the power series development of E = M / ( 1 -  Ivl) con- 
tains a linear term in Iv] and therefore it does not give the Newtonian 
expression for the energy when Iv I<< 1. The serious defects presented by the 
above expressions for energy and momentum are not surprising since they 
result from very crude assumptions on the process of energy transfer as we 
have mentioned above. 
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One way to modify the above crude model of energy transfer in order 
to obtain a relation between E, p, and M compatible with relativity 
consists in loosening the restriction a = 1 in equation (4.2). In this sense, 
having as a requisite that the mean velocity contribution coming from 
those points of the trajectory corresponding to the energy transfer must be 
such that et < 1, it can be seen that the relation 

a = (1/v)( l  - v2) j/2 (4.4) 

leads to 

M 
E-- (4.5) 

(l--v2) 1/2 

Also, according to the definition of momentum, we obtain p - - E v  
= My/(1--192) 1/2. These expressions for energy and momentum are the 
relativistic ones and they lead immediately to the relation E 2 -  M2+p 2. 
Note that from equations (4.2) and (4.4), and the definition of momentum 
p= Ev, it follows that now NaE:/: [p [ and that equation (4.2) still holds true 
together with E 2--- M2-I-p 2. 

It is clear that to assume equation (4.4) is to force things in order that 
a very rough model of energy transfer be compatible with special relativity. 
In this sense, equation (4.4) can be interpreted as a relation between a and 
v necessary to correct the too crude assumption according to which the 
trajectory of the resulting system--once the energy transfer has been taken 
into account--comprises both the points of the trajectory of the original 
system and the points corresponding to the energy transfer Nag. Some- 
thing less crude could be elaborated if one takes into account the shape of 
the probabilistic distributions of the points of trajectories of the physical 
systems having velocities smaller than unity in the reference frame under 
consideration. Then the problem of transfer of energy between two systems 
S i and Sj could be seen as the modification of the probabilistic distribution 
of points belonging to T(Si; RI) due to the interaction between S i and Sj. 
The effects of this interaction would be reflected in the probabilistic 
distribution of the points of T(S;Rj), where S---Sit.J Sj. In particular, the 
regions of Ry where such a probabilistic distribution presents maxima 
could be shifted with respect to the regions of Rf where the maxima of the 
probabilistic distributions corresponding to T(Si; Ry) and T(Sfi R:) appear. 
Such modifications of the position of the maxima may correspond to a 
change in velocity if we assume that particles or systems of particles are 
found around the regions where the probabilistic distribution of the points 
of their trajectories present maxima values. For instance, assume that the 
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regions around the maxima of T(Si;Ry ) and T(Sj;Rf) can be represented 
by two stripes of points crossing each other in Ry and each having a 
well-defined slope with respect to the t axis, then the regions of Ry around 
the maxima of T(Si U Sj; RI) could appear in Rf as a four-branch pattern. 
Following a criterion of smooth linking of consecutive branches one could 
ascribe two consecutive branches to S; and the remaining branches to Sj. If 
the inclination with respect to the t axis in Rf changes when one passes 
from one branch before the crossing to the branch associated to the same 
system after the crossing, then this corresponds to a change in velocity of 
the system in question. Note that the displacement of the region around 
the maxima of probabilistic distribution occurs not only because we are 
taking into account the shape of probabilistic distributions and then by 
simple addition of these distributions such displacements may be expected; 
but also because these displacements of the maxima are influenced by the 
interaction between S i and Sy. Such interaction could make the introduc- 
tion of a correction to the simple addition of the probabilitY distributions 
corresponding to T(Si;Rf) and T(Sj;Rj) necessary in order to get the 
probability distribution corresponding to T(S i U Sj; Ry). In the search of the 
appropriate general probabilistic distributions of the points of the trajec.- 
tory of physical systems in a given frame, one could use the guiding 
requirement that the mentioned probabilistic distributions be such that 
when we pass from the two distributions corresponding respectively to two 
given systems S i and Sj, to the distribution corresponding to the global 
system Si U Sj, then energy and momentum transform themselves accord- 
ing to relativity. 

Another way to look at this question consists in considering first the 
space and time coordinate transformations. According to our model, the 
points of a reference frame are field points. We can limit ourselves to 
coordinate transformations between frames covering the same region of a 
global field (space-time), i.e., such that the same field points enter in both. 
What changes when we pass from one frame to another is the way in 
which space and time coordinates are assigned to field points in each of 
these frames. This results from the fact that when we pass from such 
frames to others the corresponding e and ~- sets change and thus the way in 
which the points are connected to each other in each of these frames. The 
concept of field point is then playing here the same role as the concept of 
event in the usual formulation of special relativity. According to this 
formulation, the collection of events is always the same whatever the 
reference frame under consideration may be and regardless of changes in 
the way in which these events appear when one changes reference frames. 
One is always concerned with the same events. Only the coordinates 
ascribed to each of these events change in passing from one frame to 
another. 
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In Section 3 we have shown that considering the velocity of fight as an 
average value this velocity remains invariant when one passes from one 
inertial frame to another. As is well known, the Lorentz transformations 
are linear and continuous transformations that reduce themselves to 
Galilean transformations when v<<l, and that are compatible with the 
invariance of the velocity of light. Since such invariance appears in our 
model (provided we consider the velocity of light as an average value), the 
Lorentz transformations appear here again as the appropriate ones, at least 
for the cases in which we are concerned with reference frames and 
trajectories both having a very large number of field points. (Other 
coordinate transformations compatible with the scheme illustrated in Fig- 
ure 2, for instance those corresponding to 0~q,  in Figure 2, will be studied 
elsewhere.) On the other hand, we have shown in Section 3 that energy and 
momentum are conserved in our model if regions of a frame covering a 
sufficiently large number of points are considered, which is again a 
condition of macroscopicity. Therefore, if this kind of requirement is 
satisfied, we can follow the usual procedure leading to the relativistic 
expressions for energy and momentum as those compatible with Lorentz 
transformations and conservation of energy and momentum, and as those 
reducing themselves to the Newtonian expressions when v<< 1. 

Finally, let us analyze in the framework of our model how it may 
occur that a system S i which has acquired energy in an interaction with 
another system with respect to a given frame Re is such that there exists 
another reference frame with respect to which the energy of S i is equal to 
the energy of this system in Re, before the interaction has taken place. This 
is what occurs for instance in an elastic collision. I~ t  N M be the energy of 
the system S i under consideration at rest before the collision with another 
system occurring at t = t o in the inertial frame Re. Then N~ is also the mass 
of Si. Let N E be the energy of S i after the collision (t > t  o) and v the 
velocity acquired by S i in the frame Re as a result of this interaction. 
Therefore we can write N E = h N ~ / ( 1 -  v2) 1/2, where X= 1 or 2~> 1 depend- 
ing on whether the collision is elastic or not. On the other hand, let N u be 
the unit of mass in terms of which N M is expressed. (In particular, Nu may 
be equal to 1, which is the unit we have chosen in all our discussions 
above.) Then the energy of S; in Re respectively before and after the 
collision has taken place will be N ~ / N , ,  and N e / N  u. Consider now a 
reference frame/~y moving with respect to Re with the same velocity as the 
system S i at times t > t o. Then, the system S i appears at rest in/~y for all 
times t > t o. Let S u be a physical system serving as a standard to measure 
'the energy of physical systems at rest in R e. Thus Su is at rest in Re and N u 
i,s the number of field points belonging to the trajectory T(S,,; Re). If we 
want to measure the energy N E of Si in the f r a m e / ~  where S i appears a t  
rest for t > t  o, we must use the standard S,, but  once this standard has 



772 Garcla-Sucre 

acquired the velocity necessary to appear at rest in RI, i.e., at rest with 
respect to S i for t>t  o. Then the energy of the standard will now be 
N~,--Nu/(1- v2) 1/2, assuming that one tries to perturb as little as possible 
the standards and therefore one requires that the interaction or collision 
t ransmit t ingthe  necessary energy to Su in order to move it at the same 
velocity as Ry be an elastic process. Thus we can write NE/N~=XNM/N ~, 
where h--  1 and )~ > 1 correspond, respectively, to an elastic and nonelastic 
collision of S i. If ?~-- 1 we are in the case in which S; has in Ry for t < t o the 
same energy as Si in/~f for t > t o. On the other hand, it is clear that if 2, > 1 
then NEfXNMN[, /N  ~ = X N M / ( 1 - - v 2 )  1/2, where hNM is precisely the 
mass of S~ in R / f o r  all times t > t  o in the case that S~ has experienced a 
nonelastic collision at t = t o. 

5. CONCLUDING REMARKS 

In the present paper we have explored the possibility of formulating, a 
foundation theory of space- t ime and its relatives in the framework of a 
simple model. This theory presents the following features. 

(i) It is a relational theory in the sense that the disappearance of the 
most basic ingredients of the physical world (preparticles) would likewise 
entail the disappearance of physical systems and space-time. However, a 
space-t ime is not in our model a network of relations between physical 
objects, but  a physical entity constructed with the same raw materials 
(preparticles) as any physical system. On the other hand, space-t ime has in 
our model a more elaborated mathematical structure than that of physical 
systems. In this sense, the structure that physical systems may present is in 
part due to the fact that we describe physical systems in reference frames, 
which in turn are defined within a given space-time. 

(ii) We have defined space- t ime always with respect to a given 
collection of physical systems, those of interest in the problem at hand. 
This flexibility is a convenient feature since though one always speaks of 
space-t ime as a unique entity, one frequently refers to "regions" or "parts" 
of space-time. Furthermore, this feature of our model also allows us to 
include the case of space-t imes in which all kind of cuts and nonuniformi- 
ties occur since these accidents will or will not  be present depending on the 
physical systems with respect to which we define the corresponding 
space-time. 

(iii) Our model can be considered as a pregeometry in the following 
sense. We have started from only two primitive concepts, those of prepar- 
t ide and membership relation of set theory, neither of these two concepts 
being related to the concept of distance. Neither does this last concept 
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appear in any of the assumptions or the central postulate Postulate 1 we 
have introduced in our model. Yet, as an elaboration starting from the 
above two primitive concepts we have obtained as derivative concepts 
those of distance or separation in space and of interval of time between 
any two points of a reference frame. Furthermore, we can ascribe a 
topology to every field (Garc~a-Sucre, 1978a). For  arguments in favor of 
the elaboration of a pregeometry, see Misner et al. (1970). 

(iv) The postulate according to which two points of space-t ime are 
distinct from each other only because they have different structures 
- - independent ly  of whether they share none, some or all prepar- 
t ides- -p lays  an important role in our model. For  instance, in virtue of this 
postulate we do not need to introduce any extra labels (as numbers, letters, 
etc.) in order to characterize the point of a space-t ime with respect to any 
other point  of the same space-time. Another feature illustrating the role 
that Postulate 1 plays in our model is the property according to which the 
same physical system may appear either delocalized or localized in a given 
reference frame, depending on the detector physical system we use in the 
detection process. Note that we have also stated in terms of the two 
primitive concepts of our model the concept of detector physical system 
and what a detection process consists of. 

(v) We have seen how our assumption according to which the number 
of preparticles in the universe is finite is related to the fact that with simple 
definitions of energy, momentum, frequency, and wavelength of a physical 
system in a reference frame, we obtain the well-known relations E = A v  
and p = A?~-1, where A is a constant of proportionality, which we interpret 
as the Planck constant. Then, from our point of view, these two relations 
together with the fact that the measured value of the Planck constant is a 
finite quantity may be taken as an indication that the number of basic 
ingredients of the universe is also finite. 

(vi) Energy and momentum are conserved provided we consider 
sufficiently large regions of the space-t ime diagram associated to the 
reference frame under consideration. Also we have shown that the Lorentz 
transformations are the appropriate ones in our model provided we in- 
troduce some of the usual restrictions. The same occurs with the relativistic 
expressions for energy and momentum. We have also examined this last 
question in the framework of a very crude model of energy transfer 
between physical systems. We have shown that introducing a further 
restriction to this model we obtain the relativistic expressions for energy 
and momentum. Yet, we have thus only proved that our model is compati- 
ble with special relativity. On the other hand, we have outlined as a 
possible further development a way in which the relativistic expressions for 
energy and momentum may be obtained in our model as a consequence of 
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the form of the general probabilistic distributions describing the way in 
which the points of trajectories of physical systems having velocities v < 1 
distribute themselves in reference frames. 
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